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Global visual invariances

Self-supervised Learning: Global versus local

U. Ozbulak, H. J. Lee, B. Boga, E. T. Anzaku, H. Park, A. Van Messem, W. De Neve, and J. Vankerschaver. “Know your self-supervised learning: A survey on image-based generative and discriminative training”

Local spatial structure

Wang, Haochen, et al. "DropPos: Pre-Training Vision Transformers by Reconstructing Dropped Positions." NeurIPS 2023.



Grid Structure?

Current self-supervised learning approaches (i) rely on a fixed grid and (ii) focus on absolute pretext tasks
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Figure 3. Illustration of PART on 2D image data: First, a set of patches is randomly sampled from di!erent

positions in the image. This selection is done independently for each image at every iteration. Next, all patches

are resized to a uniform size. A ViT model is then used to produce an embedding for each patch. A relative

cross-attention encoder then attends to pairs of patches, using a shared weight structure to predict the relative

translations between selected pairs. For each pair of reference and target patches (i, j), the cross-attention encoder

returns ω̂ij , which represents the relative translation needed to align the reference patch i to the target patch j.

without the position embeddings. The ViT model
returns the learned patch embeddings X → → RN↑d.

Objective Before discussing how the patch embed-
dings X → are utilized in the objective function, it is
important to first introduce the di!erent components
of the objective function and how it is parameter-
ized. This requires us to revisit the o!-grid sampling
process and how it produces the target values for
the objective function. First, a pair of patches (refer-
ence, target) are sampled from the image at random
positions with (xref , yref) and (xtgt, ytgt) represent-
ing the center pixel coordinates of the two patches in
image space. Both patches are then resized to a uni-
form patch size P , masking their original position in
the image space, as well as their pixel content. The
goal is to learn the underlying translation between
any pair of patches. This translation transforms the
reference coordinate patch into the target coordinate
patch, considering the width wref and height href of
the reference patch. The task is to predict

ωref,tgt =

[
”x

”y

]

ref,tgt

=

[
(xtgt ↑ xref)/wref

(ytgt ↑ yref)/href

]

ref,tgt

with ”x and ”y capturing relative position. In
simple terms, the goal is to move the reference frame
so that it translates into the target frame. In this
context, when referring to a “frame”, we specify
the bounding box itself rather than the actual pixel
contents in the bounding box i.e. the patch (Figure
2). In contrast to augmentations that are applied
to entire images (e.g., rotations, scaling) to enforce
global invariance, PART focuses on learning spatial
relationships within the image, capturing the relative
geometry between regions.
The emphasis on predicting the relative transla-

tion is key because the pixel space information is
lost after resizing patches to a uniform size. After
resizing, the model no longer possesses details about
the original image space and needs to learn to be
robust to di!erent image resolutions. The two terms
we seek to predict are the translation in x normal-
ized by the width of the reference patch wref and

the translation in y normalized by the height of the
reference patch href . In this case, both wref and href

are equal to patch size P due to resizing.

Relative encoder architecture The ViT model
outputs a per-patch embedding X

→ → RN↑d. The
relative encoder maps the per-patch embeddings to
the relative translations between a random number
of patch pairs (#pairs), resulting in ω̂ → R2↑#pairs.
The two outputs per patch pair are the relative po-
sitions between the reference and target patches.
Given X

→, this module selects random index pairs
(#pairs) of patches S → N2↑#pairs with S0 as the
index of the reference patch and S1 as the index
of the target patch. The embeddings of reference
patches S0 and S1 are then concatenated: X̂ =
concat(X →

S0
, X

→
S1
). X̂ goes through a linear pro-

jection to convert from R#pairs↑2↑d to R#pairs↑d.
X̂ is fed into a cross-attention module [71] as the
query, and X

→ is fed as both the key and the
value. d is the dimensionality of the keys/queries:

ω̂ = softmax
(

X̂X
→↑

↓
d

)
X

→. The cross-attention mod-

ule allows for information dissemination between all
patch embeddings and enables the model to focus on
predicting the relative translation only for a subset S
of patch pairs. This imposes further masking of infor-
mation given to the model. We discuss the pros and
cons of this design choice in depth in the ablations
section. ω is only calculated for the subset S of patch
pairs. The model is trained with a mean squared
error loss between the predicted relative transla-
tions ω̂ and the ground-truth relative translations ω:

LMSE = 1

2↑#pairs

∑
2

k=1

∑
#pairs

m=1

(
ωmk ↑ ω̂mk

)2

.

Training setup Once the model is pretrained, we
tune the network end-to-end using labeled data in a
supervised setup. Following the standard ViT setup,
we eliminate the relative encoder and substitute it
with a linear classification or detection head after the
[CLS] token, which aggregates global input informa-
tion. Unlike pretraining, we incorporate randomly
initialized learnable position embeddings and apply
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Figure 3. Illustration of PART on 2D image data: First, a set of patches is randomly sampled from di!erent

positions in the image. This selection is done independently for each image at every iteration. Next, all patches

are resized to a uniform size. A ViT model is then used to produce an embedding for each patch. A relative

cross-attention encoder then attends to pairs of patches, using a shared weight structure to predict the relative

translations between selected pairs. For each pair of reference and target patches (i, j), the cross-attention encoder

returns ω̂ij , which represents the relative translation needed to align the reference patch i to the target patch j.

without the position embeddings. The ViT model
returns the learned patch embeddings X → → RN↑d.

Objective Before discussing how the patch embed-
dings X → are utilized in the objective function, it is
important to first introduce the di!erent components
of the objective function and how it is parameter-
ized. This requires us to revisit the o!-grid sampling
process and how it produces the target values for
the objective function. First, a pair of patches (refer-
ence, target) are sampled from the image at random
positions with (xref , yref) and (xtgt, ytgt) represent-
ing the center pixel coordinates of the two patches in
image space. Both patches are then resized to a uni-
form patch size P , masking their original position in
the image space, as well as their pixel content. The
goal is to learn the underlying translation between
any pair of patches. This translation transforms the
reference coordinate patch into the target coordinate
patch, considering the width wref and height href of
the reference patch. The task is to predict

ωref,tgt =

[
”x

”y

]

ref,tgt

=

[
(xtgt ↑ xref)/wref

(ytgt ↑ yref)/href

]

ref,tgt

with ”x and ”y capturing relative position. In
simple terms, the goal is to move the reference frame
so that it translates into the target frame. In this
context, when referring to a “frame”, we specify
the bounding box itself rather than the actual pixel
contents in the bounding box i.e. the patch (Figure
2). In contrast to augmentations that are applied
to entire images (e.g., rotations, scaling) to enforce
global invariance, PART focuses on learning spatial
relationships within the image, capturing the relative
geometry between regions.
The emphasis on predicting the relative transla-

tion is key because the pixel space information is
lost after resizing patches to a uniform size. After
resizing, the model no longer possesses details about
the original image space and needs to learn to be
robust to di!erent image resolutions. The two terms
we seek to predict are the translation in x normal-
ized by the width of the reference patch wref and

the translation in y normalized by the height of the
reference patch href . In this case, both wref and href

are equal to patch size P due to resizing.

Relative encoder architecture The ViT model
outputs a per-patch embedding X

→ → RN↑d. The
relative encoder maps the per-patch embeddings to
the relative translations between a random number
of patch pairs (#pairs), resulting in ω̂ → R2↑#pairs.
The two outputs per patch pair are the relative po-
sitions between the reference and target patches.
Given X

→, this module selects random index pairs
(#pairs) of patches S → N2↑#pairs with S0 as the
index of the reference patch and S1 as the index
of the target patch. The embeddings of reference
patches S0 and S1 are then concatenated: X̂ =
concat(X →

S0
, X

→
S1
). X̂ goes through a linear pro-

jection to convert from R#pairs↑2↑d to R#pairs↑d.
X̂ is fed into a cross-attention module [71] as the
query, and X

→ is fed as both the key and the
value. d is the dimensionality of the keys/queries:

ω̂ = softmax
(

X̂X
→↑

↓
d

)
X

→. The cross-attention mod-

ule allows for information dissemination between all
patch embeddings and enables the model to focus on
predicting the relative translation only for a subset S
of patch pairs. This imposes further masking of infor-
mation given to the model. We discuss the pros and
cons of this design choice in depth in the ablations
section. ω is only calculated for the subset S of patch
pairs. The model is trained with a mean squared
error loss between the predicted relative transla-
tions ω̂ and the ground-truth relative translations ω:

LMSE = 1

2↑#pairs

∑
2

k=1

∑
#pairs

m=1

(
ωmk ↑ ω̂mk

)2

.

Training setup Once the model is pretrained, we
tune the network end-to-end using labeled data in a
supervised setup. Following the standard ViT setup,
we eliminate the relative encoder and substitute it
with a linear classification or detection head after the
[CLS] token, which aggregates global input informa-
tion. Unlike pretraining, we incorporate randomly
initialized learnable position embeddings and apply
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Figure 3. Illustration of PART on 2D image data: First, a set of patches is randomly sampled from di!erent

positions in the image. This selection is done independently for each image at every iteration. Next, all patches

are resized to a uniform size. A ViT model is then used to produce an embedding for each patch. A relative

cross-attention encoder then attends to pairs of patches, using a shared weight structure to predict the relative

translations between selected pairs. For each pair of reference and target patches (i, j), the cross-attention encoder

returns ω̂ij , which represents the relative translation needed to align the reference patch i to the target patch j.

without the position embeddings. The ViT model
returns the learned patch embeddings X → → RN↑d.

Objective Before discussing how the patch embed-
dings X → are utilized in the objective function, it is
important to first introduce the di!erent components
of the objective function and how it is parameter-
ized. This requires us to revisit the o!-grid sampling
process and how it produces the target values for
the objective function. First, a pair of patches (refer-
ence, target) are sampled from the image at random
positions with (xref , yref) and (xtgt, ytgt) represent-
ing the center pixel coordinates of the two patches in
image space. Both patches are then resized to a uni-
form patch size P , masking their original position in
the image space, as well as their pixel content. The
goal is to learn the underlying translation between
any pair of patches. This translation transforms the
reference coordinate patch into the target coordinate
patch, considering the width wref and height href of
the reference patch. The task is to predict

ωref,tgt =

[
”x

”y

]

ref,tgt

=

[
(xtgt ↑ xref)/wref

(ytgt ↑ yref)/href

]

ref,tgt

with ”x and ”y capturing relative position. In
simple terms, the goal is to move the reference frame
so that it translates into the target frame. In this
context, when referring to a “frame”, we specify
the bounding box itself rather than the actual pixel
contents in the bounding box i.e. the patch (Figure
2). In contrast to augmentations that are applied
to entire images (e.g., rotations, scaling) to enforce
global invariance, PART focuses on learning spatial
relationships within the image, capturing the relative
geometry between regions.
The emphasis on predicting the relative transla-

tion is key because the pixel space information is
lost after resizing patches to a uniform size. After
resizing, the model no longer possesses details about
the original image space and needs to learn to be
robust to di!erent image resolutions. The two terms
we seek to predict are the translation in x normal-
ized by the width of the reference patch wref and

the translation in y normalized by the height of the
reference patch href . In this case, both wref and href

are equal to patch size P due to resizing.

Relative encoder architecture The ViT model
outputs a per-patch embedding X

→ → RN↑d. The
relative encoder maps the per-patch embeddings to
the relative translations between a random number
of patch pairs (#pairs), resulting in ω̂ → R2↑#pairs.
The two outputs per patch pair are the relative po-
sitions between the reference and target patches.
Given X

→, this module selects random index pairs
(#pairs) of patches S → N2↑#pairs with S0 as the
index of the reference patch and S1 as the index
of the target patch. The embeddings of reference
patches S0 and S1 are then concatenated: X̂ =
concat(X →

S0
, X

→
S1
). X̂ goes through a linear pro-

jection to convert from R#pairs↑2↑d to R#pairs↑d.
X̂ is fed into a cross-attention module [71] as the
query, and X

→ is fed as both the key and the
value. d is the dimensionality of the keys/queries:

ω̂ = softmax
(

X̂X
→↑

↓
d

)
X

→. The cross-attention mod-

ule allows for information dissemination between all
patch embeddings and enables the model to focus on
predicting the relative translation only for a subset S
of patch pairs. This imposes further masking of infor-
mation given to the model. We discuss the pros and
cons of this design choice in depth in the ablations
section. ω is only calculated for the subset S of patch
pairs. The model is trained with a mean squared
error loss between the predicted relative transla-
tions ω̂ and the ground-truth relative translations ω:

LMSE = 1

2↑#pairs

∑
2

k=1

∑
#pairs

m=1

(
ωmk ↑ ω̂mk

)2

.

Training setup Once the model is pretrained, we
tune the network end-to-end using labeled data in a
supervised setup. Following the standard ViT setup,
we eliminate the relative encoder and substitute it
with a linear classification or detection head after the
[CLS] token, which aggregates global input informa-
tion. Unlike pretraining, we incorporate randomly
initialized learnable position embeddings and apply
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Figure 3. Illustration of PART on 2D image data: First, a set of patches is randomly sampled from di!erent

positions in the image. This selection is done independently for each image at every iteration. Next, all patches

are resized to a uniform size. A ViT model is then used to produce an embedding for each patch. A relative

cross-attention encoder then attends to pairs of patches, using a shared weight structure to predict the relative

translations between selected pairs. For each pair of reference and target patches (i, j), the cross-attention encoder

returns ω̂ij , which represents the relative translation needed to align the reference patch i to the target patch j.

without the position embeddings. The ViT model
returns the learned patch embeddings X → → RN↑d.

Objective Before discussing how the patch embed-
dings X → are utilized in the objective function, it is
important to first introduce the di!erent components
of the objective function and how it is parameter-
ized. This requires us to revisit the o!-grid sampling
process and how it produces the target values for
the objective function. First, a pair of patches (refer-
ence, target) are sampled from the image at random
positions with (xref , yref) and (xtgt, ytgt) represent-
ing the center pixel coordinates of the two patches in
image space. Both patches are then resized to a uni-
form patch size P , masking their original position in
the image space, as well as their pixel content. The
goal is to learn the underlying translation between
any pair of patches. This translation transforms the
reference coordinate patch into the target coordinate
patch, considering the width wref and height href of
the reference patch. The task is to predict

ωref,tgt =

[
”x

”y

]

ref,tgt

=

[
(xtgt ↑ xref)/wref

(ytgt ↑ yref)/href

]

ref,tgt

with ”x and ”y capturing relative position. In
simple terms, the goal is to move the reference frame
so that it translates into the target frame. In this
context, when referring to a “frame”, we specify
the bounding box itself rather than the actual pixel
contents in the bounding box i.e. the patch (Figure
2). In contrast to augmentations that are applied
to entire images (e.g., rotations, scaling) to enforce
global invariance, PART focuses on learning spatial
relationships within the image, capturing the relative
geometry between regions.
The emphasis on predicting the relative transla-

tion is key because the pixel space information is
lost after resizing patches to a uniform size. After
resizing, the model no longer possesses details about
the original image space and needs to learn to be
robust to di!erent image resolutions. The two terms
we seek to predict are the translation in x normal-
ized by the width of the reference patch wref and

the translation in y normalized by the height of the
reference patch href . In this case, both wref and href

are equal to patch size P due to resizing.

Relative encoder architecture The ViT model
outputs a per-patch embedding X

→ → RN↑d. The
relative encoder maps the per-patch embeddings to
the relative translations between a random number
of patch pairs (#pairs), resulting in ω̂ → R2↑#pairs.
The two outputs per patch pair are the relative po-
sitions between the reference and target patches.
Given X

→, this module selects random index pairs
(#pairs) of patches S → N2↑#pairs with S0 as the
index of the reference patch and S1 as the index
of the target patch. The embeddings of reference
patches S0 and S1 are then concatenated: X̂ =
concat(X →

S0
, X

→
S1
). X̂ goes through a linear pro-

jection to convert from R#pairs↑2↑d to R#pairs↑d.
X̂ is fed into a cross-attention module [71] as the
query, and X

→ is fed as both the key and the
value. d is the dimensionality of the keys/queries:

ω̂ = softmax
(

X̂X
→↑

↓
d

)
X

→. The cross-attention mod-

ule allows for information dissemination between all
patch embeddings and enables the model to focus on
predicting the relative translation only for a subset S
of patch pairs. This imposes further masking of infor-
mation given to the model. We discuss the pros and
cons of this design choice in depth in the ablations
section. ω is only calculated for the subset S of patch
pairs. The model is trained with a mean squared
error loss between the predicted relative transla-
tions ω̂ and the ground-truth relative translations ω:

LMSE = 1

2↑#pairs

∑
2

k=1

∑
#pairs

m=1

(
ωmk ↑ ω̂mk

)2

.

Training setup Once the model is pretrained, we
tune the network end-to-end using labeled data in a
supervised setup. Following the standard ViT setup,
we eliminate the relative encoder and substitute it
with a linear classification or detection head after the
[CLS] token, which aggregates global input informa-
tion. Unlike pretraining, we incorporate randomly
initialized learnable position embeddings and apply
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Figure 4. Target image reconstruction given pre-

dicted relative translations in PART vs. grid sampling.

fixed grid sampling instead of random sampling and
masking.

5 Results

Having introduced the method, we now analyze the
properties learned by PART in practice. We begin
with qualitative capabilities that arise from o!-grid
sampling and relative patch prediction, and then
evaluate PART quantitatively against established
baselines.

5.1 Capabilities of PART

In this section, we start by emphasizing the poten-
tial capabilities that emerge from adopting relative
o!-grid sampling in SSL frameworks, followed by
comparisons to other methods. These capabilities
highlight the unique advantages and transforma-
tive possibilities that such a paradigm shift o!ers,
namely, (i) o!-grid reconstruction, (ii) extension to
other aspect ratios and scales, (iii) patch uncertainty,
and (iv) symmetry. For reproducibility, implementa-
tion, hyperparameters and the choice of architecture
is explained in depth in the Appendix in section 8.1.

(i) O!-grid reconstruction Unlike grid-based
approaches, PART can reconstruct the original im-
age from o!-grid patches. This is especially valuable
in domains like Satellite and LiDAR imaging, where
overlapping patches from di!erent images must be
reassembled. These patches need not come from a
single image—for instance, the model can compose a
new face by arranging parts of di!erent faces. Figure
4 illustrates this: input patches (top row) and the
predictions under di!erent sampling strategies (bot-
tom row). In PART, the ground truth visualization
consists of a subset of the patches, thus providing a
masked input to the model. Images are generated by
fixing one random reference patch and positioning
all other patches relative to it. In grid sampling, the
ground truth positions reconstruct the full image,
since patches cover the entire image. The model’s
predictions nearly match the ground truth, even in
fine details, having learned general scene structure
(e.g., sky above, road below, clock’s triangular form).
Some details are missing, such as clock hands and
numbers, and mono-color patches are harder to place
since the model sees only pixel content. PART’s abil-
ity to reconstruct from o!-grid patches highlights
its grasp of underlying image structure.

(ii) Extension to multiple aspect ratios and
scales The combination of o!-grid patch sampling
and relative position prediction as a pretext task,
o!ers the opportunity to reimagine patch sampling
in the vision transformers. If the method can predict
relative positions of equal-sized square patches (1:1
aspect ratio), why not also between patches of vary-
ing aspect ratios and scales? To test this, we run a
proof-of-concept experiment extending the objective
to include ”w and ”h for relative width and height:

ωref,tgt =





”x

”y

”w

”h





ref,tgt

=





(xtgt → xref)/wref

(ytgt → yref)/href

wtgt/wref

htgt/href





ref,tgt

We modify the sampling to include bottom-right
coordinates (xe, ye) of the patches, then resizing
patches to the ViT patch size P ↑ P . Patch width
and height are constrained between half and twice
the ViT patch size to ensure meaningful content.
The model is pretrained with the new objective for
100 epochs, and results on ImageNet classification
and COCO detection are reported in Table 1. Ex-
tending grid-based methods like MAE to multiple
aspect ratios and patch sizes is non-trivial, requiring
more advanced positional embeddings and a decoder
that can upsample multi-scale representations.

Table 1. Extending PART to patches of di!erent

aspect ratios & scales: comparison of PART and

its extension on COCO Object Detection and ImageNet

classification without extra hyperparameter tuning. This

proof-of-concept experiment motivates a new avenue for

further research in relative o!-grid pretext tasks.

COCO OD INet Class.

APb APb

50
APb

75
Accuracy

PART 42.4 62.5 46.8 82.7
PART + aspect ratio + scale 42.0 61.8 46.3 82.6

In practice, the extended model is trained for the
same number of epochs and with the same hyper-
parameters as the base model, without additional
tuning. The slight performance drop is likely due to
the increased parameter and objective complexity
introduced by the additional ”h and ”w terms. We
observed in our experiments that the convergence of
scale and aspect ratio was fast, while delaying the
convergence of ”x and ”y compared to before.

(iii) Patch uncertainty Another capability of
PART is estimating patch uncertainty by checking
whether di!erent reference patches agree on the rel-
ative position of a target patch. Our model predicts
the relative translation both when patch i serves as
a reference and target patch. In Figure 5, one target
patch is positioned relative to all reference patches.
If patches are clustered, the model is more certain
of that patch. Such uncertainty estimation is valu-
able in applications like semantic segmentation for
autonomous vehicles or tumor detection, where it

5



Capabilities: Extension to multiple aspect ratios and scales 
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Figure 4. Target image reconstruction given pre-

dicted relative translations in PART vs. grid sampling.

fixed grid sampling instead of random sampling and
masking.

5 Results

Having introduced the method, we now analyze the
properties learned by PART in practice. We begin
with qualitative capabilities that arise from o!-grid
sampling and relative patch prediction, and then
evaluate PART quantitatively against established
baselines.

5.1 Capabilities of PART

In this section, we start by emphasizing the poten-
tial capabilities that emerge from adopting relative
o!-grid sampling in SSL frameworks, followed by
comparisons to other methods. These capabilities
highlight the unique advantages and transforma-
tive possibilities that such a paradigm shift o!ers,
namely, (i) o!-grid reconstruction, (ii) extension to
other aspect ratios and scales, (iii) patch uncertainty,
and (iv) symmetry. For reproducibility, implementa-
tion, hyperparameters and the choice of architecture
is explained in depth in the Appendix in section 8.1.

(i) O!-grid reconstruction Unlike grid-based
approaches, PART can reconstruct the original im-
age from o!-grid patches. This is especially valuable
in domains like Satellite and LiDAR imaging, where
overlapping patches from di!erent images must be
reassembled. These patches need not come from a
single image—for instance, the model can compose a
new face by arranging parts of di!erent faces. Figure
4 illustrates this: input patches (top row) and the
predictions under di!erent sampling strategies (bot-
tom row). In PART, the ground truth visualization
consists of a subset of the patches, thus providing a
masked input to the model. Images are generated by
fixing one random reference patch and positioning
all other patches relative to it. In grid sampling, the
ground truth positions reconstruct the full image,
since patches cover the entire image. The model’s
predictions nearly match the ground truth, even in
fine details, having learned general scene structure
(e.g., sky above, road below, clock’s triangular form).
Some details are missing, such as clock hands and
numbers, and mono-color patches are harder to place
since the model sees only pixel content. PART’s abil-
ity to reconstruct from o!-grid patches highlights
its grasp of underlying image structure.

(ii) Extension to multiple aspect ratios and
scales The combination of o!-grid patch sampling
and relative position prediction as a pretext task,
o!ers the opportunity to reimagine patch sampling
in the vision transformers. If the method can predict
relative positions of equal-sized square patches (1:1
aspect ratio), why not also between patches of vary-
ing aspect ratios and scales? To test this, we run a
proof-of-concept experiment extending the objective
to include ”w and ”h for relative width and height:
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”x

”y

”w

”h


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(ytgt → yref)/href
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



ref,tgt

We modify the sampling to include bottom-right
coordinates (xe, ye) of the patches, then resizing
patches to the ViT patch size P ↑ P . Patch width
and height are constrained between half and twice
the ViT patch size to ensure meaningful content.
The model is pretrained with the new objective for
100 epochs, and results on ImageNet classification
and COCO detection are reported in Table 1. Ex-
tending grid-based methods like MAE to multiple
aspect ratios and patch sizes is non-trivial, requiring
more advanced positional embeddings and a decoder
that can upsample multi-scale representations.

Table 1. Extending PART to patches of di!erent

aspect ratios & scales: comparison of PART and

its extension on COCO Object Detection and ImageNet

classification without extra hyperparameter tuning. This

proof-of-concept experiment motivates a new avenue for

further research in relative o!-grid pretext tasks.

COCO OD INet Class.

APb APb

50
APb

75
Accuracy

PART 42.4 62.5 46.8 82.7
PART + aspect ratio + scale 42.0 61.8 46.3 82.6

In practice, the extended model is trained for the
same number of epochs and with the same hyper-
parameters as the base model, without additional
tuning. The slight performance drop is likely due to
the increased parameter and objective complexity
introduced by the additional ”h and ”w terms. We
observed in our experiments that the convergence of
scale and aspect ratio was fast, while delaying the
convergence of ”x and ”y compared to before.

(iii) Patch uncertainty Another capability of
PART is estimating patch uncertainty by checking
whether di!erent reference patches agree on the rel-
ative position of a target patch. Our model predicts
the relative translation both when patch i serves as
a reference and target patch. In Figure 5, one target
patch is positioned relative to all reference patches.
If patches are clustered, the model is more certain
of that patch. Such uncertainty estimation is valu-
able in applications like semantic segmentation for
autonomous vehicles or tumor detection, where it
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Capabilities: Patch uncertainty 

helps distinguish common from anomalous scenarios.

Uncertain Patch                             Certain PatchOriginal Image

Figure 5. Patch uncertainty: A single target patch

is positioned relative to all reference patches. Left: two

target patches (orange, yellow). Middle/right: model

uncertainty for orange and yellow, respectively. The

model is more certain about the unique orange patch,

while the yellow patch resembles other regions, making

its position harder to predict. Easy patches (orange) are

consistently placed at the same location, showing that

some patches are more confidently localized than others.

(iv) Symmetry When observing a lip, one ex-
pects a nose above it; seeing a nose suggests a lip be-
low. This illustrates symmetry. In this experiment,
we demonstrate that PART learns and represents
these symmetrical relationships. Figure 6 compares
the model’s prediction matrix with the ground truth,
showing strong alignment along both x and y axes.
The key property that emerges from this figure is
negative symmetry: if patch Pi predicts (!x,!y)
relative to Pj , then Pj predicts (→!x,→!y) rela-
tive to Pi. Despite heavy masking and lack of global
patch information, the model positions patches cor-
rectly relative to each other. Learning the negative
symmetry results in consistent relative positioning
of object parts, which we expect benefits localization
and fine-grained understanding. When samples are
scarce, our approach allows for learning from fewer
variations due to these built-in symmetries.
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Figure 6. Negative symmetry in output predic-

tion matrices for x and y translations with ordered vs.

shu!ed patch indices, showing that PART positions each

patch-pair correctly relative to each other. Ordered ma-

trices sort patches from top-left to bottom-right. Each

N →N element (i, j) gives the relative translation from

reference patch i to target j. Bright colors indicate posi-

tive values, dark negative, and gray zero; color intensity

reflects magnitude.

5.2 Comparison to grid-based

So far, we have qualitatively demonstrated that
PART learns to reconstruct the target image us-
ing the relative positions of o”-grid patches. It
also learns the negative symmetry between pairs of
patches. These capabilities arise because PART has
learned the structure of input images and how they
relate to each other both locally and globally within

the image. Here, we focus on quantitative results
and compare PART to other grid-based methods
that provide a fair comparison on precise local tasks,
such as object detection and time-series prediction.

Object detection In Table 2, we compare PART
with MAE [20], MP3 [21] and DropPos [22] grid-
based pretraining methods in the downstream ob-
ject detection performance. The results demon-
strate that PART’s o”-grid sampling with overlap-
ping patches and relative patch position prediction
improve detection accuracy, particularly for fine-
grained local tasks where precise spatial understand-
ing is critical, outperforming methods like MAE,
MP3, and DropPos, which rely on fixed grid-based
sampling. Notably, while MAE and DropPos use po-
sitional embeddings, MP3 and PART do not. PART
achieves performance comparable to DropPos, de-
spite DropPos employing additional losses (attentive
reconstruction and position smoothing). Without
these auxiliary losses, DropPos’s detection perfor-
mance drops by roughly 2% (Tables 3 & 4 in [22]),
highlighting the strength of PART’s objective.

Table 2. Object detection comparison. Our

method outperforms state-of-the-art grid-based base-

lines on COCO detection while relying on the same

backbone. † means our implementation, ω means the

result is borrowed from [22].

APb APb

50
APb

75

Grid-based
MAE [20]ω 40.1 60.5 44.1
MP3 [21]† 41.8 61.4 46.0
DropPos [22] 42.1 62.0 46.4

Relative o!-grid
PART 42.4 62.5 46.8

Time-series prediction PART can also be ap-
plied to 1D data. Here we take 1D time series pre-
diction as an example. For 1D data, PART predicts
relative time shifts (!t) between randomly-sampled,
unequally-spaced windows (the 1D equivalent of o”-
grid patches) from longer sequences. We validate
this approach by pretraining a 1D ViT on biosignals
from the PhysioNet 2018 ”You Snooze You Win”
Challenge Dataset [72]. As shown in Table 3, our
method achieves at least a 2% improvement in sleep
staging classification performance compared to both
supervised and self-supervised baselines. This task
particularly benefits from PART’s capabilities, as
accurate sleep staging requires both precise local rep-
resentations and global understanding of each stage’s
position within the complete sequence. Additionally,
as shown in the Appendix 8.2, PART demonstrates
superior sample e#ciency by e”ectively learning the
structure of 1D EEG signals, although limited train-
ing data is available.
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Capabilities: Symmetry

helps distinguish common from anomalous scenarios.
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Figure 5. Patch uncertainty: A single target patch

is positioned relative to all reference patches. Left: two

target patches (orange, yellow). Middle/right: model

uncertainty for orange and yellow, respectively. The

model is more certain about the unique orange patch,

while the yellow patch resembles other regions, making

its position harder to predict. Easy patches (orange) are

consistently placed at the same location, showing that

some patches are more confidently localized than others.

(iv) Symmetry When observing a lip, one ex-
pects a nose above it; seeing a nose suggests a lip be-
low. This illustrates symmetry. In this experiment,
we demonstrate that PART learns and represents
these symmetrical relationships. Figure 6 compares
the model’s prediction matrix with the ground truth,
showing strong alignment along both x and y axes.
The key property that emerges from this figure is
negative symmetry: if patch Pi predicts (!x,!y)
relative to Pj , then Pj predicts (→!x,→!y) rela-
tive to Pi. Despite heavy masking and lack of global
patch information, the model positions patches cor-
rectly relative to each other. Learning the negative
symmetry results in consistent relative positioning
of object parts, which we expect benefits localization
and fine-grained understanding. When samples are
scarce, our approach allows for learning from fewer
variations due to these built-in symmetries.
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tion matrices for x and y translations with ordered vs.

shu!ed patch indices, showing that PART positions each

patch-pair correctly relative to each other. Ordered ma-

trices sort patches from top-left to bottom-right. Each

N →N element (i, j) gives the relative translation from

reference patch i to target j. Bright colors indicate posi-

tive values, dark negative, and gray zero; color intensity

reflects magnitude.

5.2 Comparison to grid-based

So far, we have qualitatively demonstrated that
PART learns to reconstruct the target image us-
ing the relative positions of o”-grid patches. It
also learns the negative symmetry between pairs of
patches. These capabilities arise because PART has
learned the structure of input images and how they
relate to each other both locally and globally within

the image. Here, we focus on quantitative results
and compare PART to other grid-based methods
that provide a fair comparison on precise local tasks,
such as object detection and time-series prediction.

Object detection In Table 2, we compare PART
with MAE [20], MP3 [21] and DropPos [22] grid-
based pretraining methods in the downstream ob-
ject detection performance. The results demon-
strate that PART’s o”-grid sampling with overlap-
ping patches and relative patch position prediction
improve detection accuracy, particularly for fine-
grained local tasks where precise spatial understand-
ing is critical, outperforming methods like MAE,
MP3, and DropPos, which rely on fixed grid-based
sampling. Notably, while MAE and DropPos use po-
sitional embeddings, MP3 and PART do not. PART
achieves performance comparable to DropPos, de-
spite DropPos employing additional losses (attentive
reconstruction and position smoothing). Without
these auxiliary losses, DropPos’s detection perfor-
mance drops by roughly 2% (Tables 3 & 4 in [22]),
highlighting the strength of PART’s objective.

Table 2. Object detection comparison. Our

method outperforms state-of-the-art grid-based base-

lines on COCO detection while relying on the same

backbone. † means our implementation, ω means the

result is borrowed from [22].

APb APb

50
APb

75

Grid-based
MAE [20]ω 40.1 60.5 44.1
MP3 [21]† 41.8 61.4 46.0
DropPos [22] 42.1 62.0 46.4

Relative o!-grid
PART 42.4 62.5 46.8

Time-series prediction PART can also be ap-
plied to 1D data. Here we take 1D time series pre-
diction as an example. For 1D data, PART predicts
relative time shifts (!t) between randomly-sampled,
unequally-spaced windows (the 1D equivalent of o”-
grid patches) from longer sequences. We validate
this approach by pretraining a 1D ViT on biosignals
from the PhysioNet 2018 ”You Snooze You Win”
Challenge Dataset [72]. As shown in Table 3, our
method achieves at least a 2% improvement in sleep
staging classification performance compared to both
supervised and self-supervised baselines. This task
particularly benefits from PART’s capabilities, as
accurate sleep staging requires both precise local rep-
resentations and global understanding of each stage’s
position within the complete sequence. Additionally,
as shown in the Appendix 8.2, PART demonstrates
superior sample e#ciency by e”ectively learning the
structure of 1D EEG signals, although limited train-
ing data is available.
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Comparison to Grid-based: Object detection

helps distinguish common from anomalous scenarios.
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uncertainty for orange and yellow, respectively. The

model is more certain about the unique orange patch,

while the yellow patch resembles other regions, making

its position harder to predict. Easy patches (orange) are

consistently placed at the same location, showing that

some patches are more confidently localized than others.

(iv) Symmetry When observing a lip, one ex-
pects a nose above it; seeing a nose suggests a lip be-
low. This illustrates symmetry. In this experiment,
we demonstrate that PART learns and represents
these symmetrical relationships. Figure 6 compares
the model’s prediction matrix with the ground truth,
showing strong alignment along both x and y axes.
The key property that emerges from this figure is
negative symmetry: if patch Pi predicts (!x,!y)
relative to Pj , then Pj predicts (→!x,→!y) rela-
tive to Pi. Despite heavy masking and lack of global
patch information, the model positions patches cor-
rectly relative to each other. Learning the negative
symmetry results in consistent relative positioning
of object parts, which we expect benefits localization
and fine-grained understanding. When samples are
scarce, our approach allows for learning from fewer
variations due to these built-in symmetries.
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shu!ed patch indices, showing that PART positions each

patch-pair correctly relative to each other. Ordered ma-

trices sort patches from top-left to bottom-right. Each

N →N element (i, j) gives the relative translation from

reference patch i to target j. Bright colors indicate posi-

tive values, dark negative, and gray zero; color intensity

reflects magnitude.

5.2 Comparison to grid-based

So far, we have qualitatively demonstrated that
PART learns to reconstruct the target image us-
ing the relative positions of o”-grid patches. It
also learns the negative symmetry between pairs of
patches. These capabilities arise because PART has
learned the structure of input images and how they
relate to each other both locally and globally within

the image. Here, we focus on quantitative results
and compare PART to other grid-based methods
that provide a fair comparison on precise local tasks,
such as object detection and time-series prediction.

Object detection In Table 2, we compare PART
with MAE [20], MP3 [21] and DropPos [22] grid-
based pretraining methods in the downstream ob-
ject detection performance. The results demon-
strate that PART’s o”-grid sampling with overlap-
ping patches and relative patch position prediction
improve detection accuracy, particularly for fine-
grained local tasks where precise spatial understand-
ing is critical, outperforming methods like MAE,
MP3, and DropPos, which rely on fixed grid-based
sampling. Notably, while MAE and DropPos use po-
sitional embeddings, MP3 and PART do not. PART
achieves performance comparable to DropPos, de-
spite DropPos employing additional losses (attentive
reconstruction and position smoothing). Without
these auxiliary losses, DropPos’s detection perfor-
mance drops by roughly 2% (Tables 3 & 4 in [22]),
highlighting the strength of PART’s objective.

Table 2. Object detection comparison. Our

method outperforms state-of-the-art grid-based base-

lines on COCO detection while relying on the same

backbone. † means our implementation, ω means the

result is borrowed from [22].

APb APb
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APb

75

Grid-based
MAE [20]ω 40.1 60.5 44.1
MP3 [21]† 41.8 61.4 46.0
DropPos [22] 42.1 62.0 46.4

Relative o!-grid
PART 42.4 62.5 46.8

Time-series prediction PART can also be ap-
plied to 1D data. Here we take 1D time series pre-
diction as an example. For 1D data, PART predicts
relative time shifts (!t) between randomly-sampled,
unequally-spaced windows (the 1D equivalent of o”-
grid patches) from longer sequences. We validate
this approach by pretraining a 1D ViT on biosignals
from the PhysioNet 2018 ”You Snooze You Win”
Challenge Dataset [72]. As shown in Table 3, our
method achieves at least a 2% improvement in sleep
staging classification performance compared to both
supervised and self-supervised baselines. This task
particularly benefits from PART’s capabilities, as
accurate sleep staging requires both precise local rep-
resentations and global understanding of each stage’s
position within the complete sequence. Additionally,
as shown in the Appendix 8.2, PART demonstrates
superior sample e#ciency by e”ectively learning the
structure of 1D EEG signals, although limited train-
ing data is available.
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Comparison to Grid-based: Time-series prediction
Table 3. Sleep stage classification accuracy rep-

resented using Cohen’s Kappa. PT, FT = number of

pretraining, finetuning epochs. †= our implementation.

PT FT Cohen’s Kappa

Supervised
Supervised w/ Pos Embed† 0 100 0.531

Grid-based
MP3 [21]† 1000 100 0.553
DropPos [22]† 1000 100 0.582
MAE [20]† 1000 100 0.595

Relative o!-grid
PART 1000 100 0.616

5.3 Ablations

Sampling strategies An essential component of
our method is the patch sampling process. Besides
random sampling, we ablate on on-grid sampling
similar to MP3 and DropPos (Figure 7). In the grid
sampling, all patches are arranged in a grid form,
with a fixed size at fixed positions. PART-grid has
a similar patch sampling to MP3 but with a relative
objective function. The results in Table 4 show that
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Figure 7. PART adopts a random sampling strategy.

Grid sampling (PART-grid) is performed as an ablation.

random continuous sampling improves performance
in di!erent tasks and domains compared to PART-
grid while introducing more masking. Looking be-
yond the grid improves downstream performance.

COCO CIFAR-100 IN-1K Time-series

PART-grid 41.4 82.1 82.43 0.500
PART 42.4 83.0 82.7 0.616

Table 4. Apples-to-apples comparison for on-grid

versus o!-grid patch sampling with relative position pre-

diction objective. For detection (COCO), classification

(CIFAR-100, IN-1K), and time-series prediction, o!-grid

patch sampling performs better since it can capture pre-

cise local information better.

Impact of relative encoder Besides the cross-
attention relative encoder in the method, we perform
an ablation study on two other ways to learn this
mapping. The most straightforward approach is a
fully connected MLP that receives all patches con-
catenated as an input and predicts the translation for
any two patches. So, given N patches with d dimen-
sions, the relative encoder would have N → d →N2 → 2
parameters. Although the weights are not shared in
this approach, such as in the cross-attention head,
the relative encoder can access all patch embeddings.
This helps the model to converge faster because it
can use extra information from other patches. How-
ever, the classification head will replace the relative

encoder during finetuning. The time spent on train-
ing the fully connected MLP can be spent on training
better representations instead.
Table 5. Ablation on di!erent relative encoders

for CIFAR-100 pretrained for 1000 epochs. The cross-

attention is preferred over standard feed-forward layers.

Error ↑ Accuracy ↓
x y Euclidean

MLP 3.18 2.02 1.68 82.38
Pairwise MLP 2.84 1.76 1.59 82.52
Cross-attention 1.14 0.77 0.81 83.00

We propose an alternative relative encoder that
compensates for the high parameter count in the
fully connected MLP approach through weight
sharing, which we term a pairwise MLP. The
pairwise MLP receives two concatenated patches
as input and predicts their relative translation.
Although this approach uses only 2→d→2 parameters,
the relative encoder cannot access all the patches,
thus predicting the translations solely based on the
content of these two patches. Table 5 shows the
results for di!erent relative encoders. The results
suggest that the cross-attention head (83.00%)
outperforms pairwise MLP (82.52%) and MLP
(82.38%). MLP is computationally more expensive
than pairwise MLP and cross-attention.

Table 6. ImageNet-1k classification with ViT-B.

PART is comparable to other grid-based methods. Pos

Embed = using position embedding. †= our implemen-

tation, ω= borrowed from [20], →= borrowed from [21].

Pos Embed PT FT Accuracy

Supervised
Labelled baseline→ ↭ 0 300 81.8
Labelled baseline→ 0 300 79.1

Contrastive
MoCo v3 [66]ω ↭ 300 150 83.2
DINO [45]ω ↭ 300 300 82.8
BEiT [56]ω ↭ 800 100 83.2
CIM [25] ↭ 300 100 83.1

Grid-based
MAE [20]→ ↭ 150 150 82.7
MAE [20]→ ↭ 1600 100 83.6
MP3 [21]† ↭ 400 300 82.6
MP3 [21] 100 300 81.9
DropPos [22] ↭ 200 100 83.0

Relative o!-grid
PART 400 300 82.7

Does PART come at the cost of image clas-
sification? In Table 6, we compare PART with
supervised and state-of-the-art SSL alternatives on
the ImageNet-1K [73] classification benchmark. Our
method outperforms the supervised results as well
as MP3 [21] and shows competitive performance
with respect to DropPos [20] and MAE [20]. Note
the latter methods employ position embedding dur-
ing pretraining. DropPos employs extra position
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Ablations: Sampling strategies

Table 3. Sleep stage classification accuracy rep-

resented using Cohen’s Kappa. PT, FT = number of

pretraining, finetuning epochs. †= our implementation.

PT FT Cohen’s Kappa

Supervised
Supervised w/ Pos Embed† 0 100 0.531

Grid-based
MP3 [21]† 1000 100 0.553
DropPos [22]† 1000 100 0.582
MAE [20]† 1000 100 0.595

Relative o!-grid
PART 1000 100 0.616

5.3 Ablations

Sampling strategies An essential component of
our method is the patch sampling process. Besides
random sampling, we ablate on on-grid sampling
similar to MP3 and DropPos (Figure 7). In the grid
sampling, all patches are arranged in a grid form,
with a fixed size at fixed positions. PART-grid has
a similar patch sampling to MP3 but with a relative
objective function. The results in Table 4 show that
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Figure 7. PART adopts a random sampling strategy.

Grid sampling (PART-grid) is performed as an ablation.

random continuous sampling improves performance
in di!erent tasks and domains compared to PART-
grid while introducing more masking. Looking be-
yond the grid improves downstream performance.

COCO CIFAR-100 IN-1K Time-series

PART-grid 41.4 82.1 82.43 0.500
PART 42.4 83.0 82.7 0.616

Table 4. Apples-to-apples comparison for on-grid

versus o!-grid patch sampling with relative position pre-

diction objective. For detection (COCO), classification

(CIFAR-100, IN-1K), and time-series prediction, o!-grid

patch sampling performs better since it can capture pre-

cise local information better.

Impact of relative encoder Besides the cross-
attention relative encoder in the method, we perform
an ablation study on two other ways to learn this
mapping. The most straightforward approach is a
fully connected MLP that receives all patches con-
catenated as an input and predicts the translation for
any two patches. So, given N patches with d dimen-
sions, the relative encoder would have N → d →N2 → 2
parameters. Although the weights are not shared in
this approach, such as in the cross-attention head,
the relative encoder can access all patch embeddings.
This helps the model to converge faster because it
can use extra information from other patches. How-
ever, the classification head will replace the relative

encoder during finetuning. The time spent on train-
ing the fully connected MLP can be spent on training
better representations instead.
Table 5. Ablation on di!erent relative encoders

for CIFAR-100 pretrained for 1000 epochs. The cross-

attention is preferred over standard feed-forward layers.

Error ↑ Accuracy ↓
x y Euclidean

MLP 3.18 2.02 1.68 82.38
Pairwise MLP 2.84 1.76 1.59 82.52
Cross-attention 1.14 0.77 0.81 83.00

We propose an alternative relative encoder that
compensates for the high parameter count in the
fully connected MLP approach through weight
sharing, which we term a pairwise MLP. The
pairwise MLP receives two concatenated patches
as input and predicts their relative translation.
Although this approach uses only 2→d→2 parameters,
the relative encoder cannot access all the patches,
thus predicting the translations solely based on the
content of these two patches. Table 5 shows the
results for di!erent relative encoders. The results
suggest that the cross-attention head (83.00%)
outperforms pairwise MLP (82.52%) and MLP
(82.38%). MLP is computationally more expensive
than pairwise MLP and cross-attention.

Table 6. ImageNet-1k classification with ViT-B.
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tation, ω= borrowed from [20], →= borrowed from [21].
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MP3 [21] 100 300 81.9
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Does PART come at the cost of image clas-
sification? In Table 6, we compare PART with
supervised and state-of-the-art SSL alternatives on
the ImageNet-1K [73] classification benchmark. Our
method outperforms the supervised results as well
as MP3 [21] and shows competitive performance
with respect to DropPos [20] and MAE [20]. Note
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ing pretraining. DropPos employs extra position
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our method is the patch sampling process. Besides
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similar to MP3 and DropPos (Figure 7). In the grid
sampling, all patches are arranged in a grid form,
with a fixed size at fixed positions. PART-grid has
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grid while introducing more masking. Looking be-
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versus o!-grid patch sampling with relative position pre-

diction objective. For detection (COCO), classification

(CIFAR-100, IN-1K), and time-series prediction, o!-grid

patch sampling performs better since it can capture pre-

cise local information better.

Impact of relative encoder Besides the cross-
attention relative encoder in the method, we perform
an ablation study on two other ways to learn this
mapping. The most straightforward approach is a
fully connected MLP that receives all patches con-
catenated as an input and predicts the translation for
any two patches. So, given N patches with d dimen-
sions, the relative encoder would have N → d →N2 → 2
parameters. Although the weights are not shared in
this approach, such as in the cross-attention head,
the relative encoder can access all patch embeddings.
This helps the model to converge faster because it
can use extra information from other patches. How-
ever, the classification head will replace the relative

encoder during finetuning. The time spent on train-
ing the fully connected MLP can be spent on training
better representations instead.
Table 5. Ablation on di!erent relative encoders

for CIFAR-100 pretrained for 1000 epochs. The cross-

attention is preferred over standard feed-forward layers.

Error ↑ Accuracy ↓
x y Euclidean

MLP 3.18 2.02 1.68 82.38
Pairwise MLP 2.84 1.76 1.59 82.52
Cross-attention 1.14 0.77 0.81 83.00

We propose an alternative relative encoder that
compensates for the high parameter count in the
fully connected MLP approach through weight
sharing, which we term a pairwise MLP. The
pairwise MLP receives two concatenated patches
as input and predicts their relative translation.
Although this approach uses only 2→d→2 parameters,
the relative encoder cannot access all the patches,
thus predicting the translations solely based on the
content of these two patches. Table 5 shows the
results for di!erent relative encoders. The results
suggest that the cross-attention head (83.00%)
outperforms pairwise MLP (82.52%) and MLP
(82.38%). MLP is computationally more expensive
than pairwise MLP and cross-attention.

Table 6. ImageNet-1k classification with ViT-B.

PART is comparable to other grid-based methods. Pos

Embed = using position embedding. †= our implemen-

tation, ω= borrowed from [20], →= borrowed from [21].

Pos Embed PT FT Accuracy

Supervised
Labelled baseline→ ↭ 0 300 81.8
Labelled baseline→ 0 300 79.1

Contrastive
MoCo v3 [66]ω ↭ 300 150 83.2
DINO [45]ω ↭ 300 300 82.8
BEiT [56]ω ↭ 800 100 83.2
CIM [25] ↭ 300 100 83.1

Grid-based
MAE [20]→ ↭ 150 150 82.7
MAE [20]→ ↭ 1600 100 83.6
MP3 [21]† ↭ 400 300 82.6
MP3 [21] 100 300 81.9
DropPos [22] ↭ 200 100 83.0

Relative o!-grid
PART 400 300 82.7

Does PART come at the cost of image clas-
sification? In Table 6, we compare PART with
supervised and state-of-the-art SSL alternatives on
the ImageNet-1K [73] classification benchmark. Our
method outperforms the supervised results as well
as MP3 [21] and shows competitive performance
with respect to DropPos [20] and MAE [20]. Note
the latter methods employ position embedding dur-
ing pretraining. DropPos employs extra position
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Ablations: Relative encoder

Table 3. Sleep stage classification accuracy rep-

resented using Cohen’s Kappa. PT, FT = number of

pretraining, finetuning epochs. †= our implementation.

PT FT Cohen’s Kappa

Supervised
Supervised w/ Pos Embed† 0 100 0.531

Grid-based
MP3 [21]† 1000 100 0.553
DropPos [22]† 1000 100 0.582
MAE [20]† 1000 100 0.595

Relative o!-grid
PART 1000 100 0.616

5.3 Ablations

Sampling strategies An essential component of
our method is the patch sampling process. Besides
random sampling, we ablate on on-grid sampling
similar to MP3 and DropPos (Figure 7). In the grid
sampling, all patches are arranged in a grid form,
with a fixed size at fixed positions. PART-grid has
a similar patch sampling to MP3 but with a relative
objective function. The results in Table 4 show that
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compensates for the high parameter count in the
fully connected MLP approach through weight
sharing, which we term a pairwise MLP. The
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as input and predicts their relative translation.
Although this approach uses only 2→d→2 parameters,
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thus predicting the translations solely based on the
content of these two patches. Table 5 shows the
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suggest that the cross-attention head (83.00%)
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Does PART come at the cost of image clas-
sification? In Table 6, we compare PART with
supervised and state-of-the-art SSL alternatives on
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Table 7. CIFAR-100 ViT-S. PART is comparable to

other grid-based methods. ω= borrowed from [21].

Pos Embed PT Accuracy

Supervised
Labelled baselineω ↭ 0 73.6
Labelled baselineω 0 64.6

Contrastive
MoCo v3 [66] ω ↭ 2000 83.3

Grid-based
MAE [20]ω ↭ 2000 84.5
MP3 [21] ↭ 2000 84.0
MP3 [21] 2000 82.6

Relative o!-grid
PART 1000 83.0
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Figure 8. #patch pairs ablation CIFAR-100.

smoothing and attentive reconstruction techniques
that could further accelerate training.
We compare PART with supervised and self-

supervised alternatives on the CIFAR100 [74] classi-
fication benchmark in Table 7. PART consistently
outperforms the supervised baselines with and with-
out position embeddings, although it does not use
any position embeddings. With only 1000 pretrain-
ing epochs, PART outperforms the MP3 [21] baseline
with 2000 epochs of pretraining.

Number of patch pairs As explained in 4, a sub-
set S is randomly chosen from the patch embeddings.
#pairs is the parameter that determines the length
of S. We study the e!ect of #pairs in Figure 8 after
400, 1000, and 4000 epochs of pretraining. We ob-
serve that curves follow similar patterns for di!erent
epochs of pretraining, while more pretraining epochs
result in higher accuracy. We also observe a trade-
o! in #pairs. Higher #pairs means the model sees
more patch information but must also predict the
relative translations for more contradicting patch
pairs. Whereas smaller #pairs means the model has
access to less information, thus overfitting on the
task leading to less general representations. There
is a sweet spot with 2048 patch pairs, where enough
global patch information is given to the model, and
the training task is neither easy nor di”cult.

6 Conclusion

The composition of objects and their parts, along
with their relative positions, o!ers rich information
for representation learning. We introduced PART, a

pretraining method that predicts continuous relative
transformations between random o!-grid patches,
learning the relative composition of images that gen-
eralize beyond occlusions and deformations. We
demonstrated PART’s capabilities—o!-grid recon-
struction, flexible patch forms, patch uncertainty,
and symmetry—and how these support the quanti-
tative results. On tasks requiring precise spatial un-
derstanding, such as object detection and time-series
prediction, PART outperforms grid-based methods
like MAE and DropPos, while remaining competi-
tive on global classification. Our experiments show
PART’s applicability across data types, domains,
and tasks, with potential for further extensions dis-
cussed in the next section.

7 Discussion & Future Work

So far, we demonstrated the capabilities of PART
as well as its applicability on multiple data types
(1D & 2D), domains (medical & every-day) and
tasks (classification & detection). Here, we discuss
potential benefits and future directions in depth.

Complementary to contrastive learning:
PART provides fine-grained local representations,
making it a complement to contrastive methods.
Combined, they can capture both local and global
patterns by uniting PART’s o!-grid position predic-
tion with contrastive learning’s view augmentations.

Hierarchical multi-scale learning: PART’s
sampling strategy raises questions on whether
patches should be sampled randomly or focus on ob-
jects or background depending on the downstream
task. Extending to multiple scales and aspect ratios
could enable hierarchical multi-resolution represen-
tations, where objects and their parts at di!erent
scales are accurately captured.

Modeling rotations: For example, seeing a lip
suggests a nose above it—but if the lip is rotated, the
expectation is a rotated nose. A key question is how
PART can be generalized for rotation equivariance.

Extension to other tasks: Relative position pre-
diction strengthens spatial reasoning in continuous
space, benefiting tasks that demand fine-grained spa-
tial understanding such as scene graph generation,
spatial relation prediction, and 3D reconstruction.

Universal pretraining across diverse data
types and domains: PART can be extended
to audio spectrograms, videos, and sensor data
by adding a temporal constraint, learning relative
spatio-temporal relationships. O!-grid sampling
with overlapping, variable-sized patches enables flex-
ible representations that capture real-world struc-
tures. This makes PART useful for reconstruction
in satellite and LiDAR imaging, as well as for data-
scarce, high-precision domains like medical imaging.
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Thank you!
Please reach out to me for 
discussions and collaborations. 
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