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PART: Self-supervised Pretraining with
Pairwise Relative Translations

2024 Submission # x

Images are often composed of objects and object parts that are related to each other but
are not necessarily related to their absolute position in the image frame. For instance, the pose
of a person’s nose is consistent relative to the forehead, while that same nose can be anywhere
in absolute position in the image frame. To capture these underlying relative relationships,
we introduce PART, a novel pretraining approach that predicts pairwise relative translations
between randomly sampled input patches. Through this process, the original patch positions
are masked out. The pretraining objective is to predict the pairwise translation parameters for
any set of patches, just using the patch content. Our object detection experiments on COCO
show improved performance over strong baselines such as MAE and DropPos. Our method is
competitive on the ImageNet-1k classification benchmark. Beyond vision, we also outperform
baselines on 1D time series prediction tasks. The code and models will be available soon.

1 Introduction

Self-supervised learning (SSL) has shown great progress in visual representation learning
without relying on expensive labeled data. Many existing SSL methods for images, e.g.
MAE [16], Jigsaw [23], MP3 [32], and DropPos [31], extract patches from images using
a grid structure. MAE [16] masks part of this grid, and the pretext task is to generate the
original unmasked image with a reconstruction loss. Other approaches that shuffle or mask
patches aim to predict the original position index of the patches. The nature of these tasks
imposes patchifying images into a grid. However, real-world objects do not naturally align
with this rigid grid structure. Thus, we develop a method that learns from randomly sampled
patches, moving away from the fixed grid structure.

Random off-grid sampling entails that each patch can be at any position in the image,
naturally masking the unsampled parts (Figure 4). Due to altering the sampling strategy, we
are prompted to reconsider the objective function. Instead of a classification objective as
used in absolute position prediction, we propose a regression objective to model the relative
relationships between randomly sampled patches solely based on the content of the patches.

We introduce PART: PAirwise Relative Translations a pretraining method that predicts
relative translations between randomly sampled patches. The pretext objective is set up as a
regression task to predict the translation (Ax,Ay) between each pair of patches (Figure 1). We
also introduce a novel cross-attention architecture that serves as a projection head.

We empirically show that PART outperforms baselines in object detection and 1D EEG
classification and remains competitive for image classification. We also perform ablation
studies that compare different sampling strategies and projection head architectures.
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Figure 1: PART sampling and objective: a pair of patches are sampled from the image at
random positions. Consider the yellow patch as the reference and the green one as the target.
The pretext task is learning the underlying translation between any pair of patches, given only
the pixel content. The translation maps the reference frame into the target frame.

2 Related Work

Self-supervised learning. SSL techniques are categorized into two main families [31]. The
first family are the contrastive learning methods, where different views or representations of
the same datapoint are given to one or two parallel models. The objective is maximizing the
agreement between the two views [3, 4, 6, 14, 15, 25].

Masked prediction as a pretext task. The second family are the masked prediction methods
in which certain information about the input is masked out and the model’s task is to either
reconstruct the original input or predict the masked-out portion. For instance in natural
language processing, BERT [9] proposed training a transformer by solving masked token
prediction. In computer vision, some early SSL methods apply degradations to training
images, such as decolorization [33], rotation [13], or noise [30] and train models to undo or
predict these degradations. In [26] the network is trained to inpaint the contents of a masked
image region by understanding the content of the entire image. This group of methods has also
been used to pretrain vision transformers [11] and has improved performance in downstream
tasks over supervised and constrastive learning baselines. A popular masking method is the
MAE work [16], which is based on BeiT [2] where a random subset of the image patches are
masked out, and the pretext task involves reconstructing the entire image in pixel space. In
I-JEPA [1], the pretext task is given a single context block, predicting the representation of the
rest of the image blocks. The methods mentioned so far can be grouped into generative-based
methods in which the model reconstructs the original input using generative models such as
VAE:s [18].

Position prediction as a pretext task. Certain challenges arise with generative-based
masked prediction, such as longer training time and the increased complexity that the re-
construction task brings with itself [32]. To address these challenges, alternative models
have emerged with the pretext task of predicting the absolute position of the masked patches
instead of content reconstruction [31, 32]. In MP3 [32], the corresponding keys to a random
set of patches are masked out, whereas in DropPos [31], the position embeddings of a random
portion of the image are masked out. The pretext task in both methods is predicting the
exact position of each patch, requiring it to solve the puzzle of determining where each patch
originated from. The idea behind these methods originates from the [10, 21] and later on the
Jigsaw [23, 24] works, where masking is performed by making a puzzle from a part of the
image and pretraining a CNN to solve the jigsaw puzzle by predicting the absolute position
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Figure 2: Illustration of PART on 2D image data: We first sample a set of patches from
random positions. These patches are chosen randomly for each image at each iteration. Then,
all patches are resized to a uniform patch size and given to the ViT model. The ViT model
predicts a representation for each patch. The cross-attention projector returns a o; ; for each
pair of (reference, target) patch (i, j). o; ; is the relative translation that converts reference
frame i to target frame j.

of each piece. DILEMMA [28] enforces predicting the position of patches that have been
artificially misplaced. In [5], the pretext task is the absolute position prediction of a random
portion of the image given the input image as a reference. While vision transformers typically
exhibit insensitivity to the input tokens order [7, 22], leading to the hypothesis that they
tend to model the relationship between a set of unordered input tokens, the above-mentioned
models focus explicitly on absolute position awareness. In contrast, PART is trained on
relative translations between random input patches.

Relative information as a pretext task. The notion of relative information has been used in
self-supervised learning in various tasks and domains. In graph representation learning, [27]
proposed predicting the local relative contextual position of one node to another. For single
image depth estimation, [17] proposed estimating the relative depth using the motion in the
video. For object detection, [34] proposed a self-supervised spatial context learning module
that learns the internal object structure by predicting the relative positions within the extent
of that object. The above-mentioned methods learn with respect to one reference frame. In
contrast, PART learns the relative information of any reference frame to any target frame.

3 Pairwise Relative Translations

3.1 Random Off-grid Sampling

Given an image I € RF*W*Cwe extract N random patches from the image. With (xy,y;) as

the coordinates of the top left corner of the frame and (x; + D,ys + D) as the coordinates of
the bottom right corner of the frame, respectively. These patches are of shape D x D and are
in random positions of the image. H and W are the height and width of the image, and C is

the number of channels. P is the patch size, and N = & ;ZW is the number of patches. Each
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sampled patch of shape D x D is then resized to P x P with C channels. Now we have N
samples of P x P x C that can be reshaped into the original image size [ € R?*W*C_ This
reshaped image would have looked like a puzzled version of the original image if the random
samples were on-grid and with a P x P shape. During random sampling, parts of the image
are masked out. Also, some information about each patch’s spatial frequency is masked by
resizing all samples to the patch size. The pretext task is set up such that the ViT model
consumes images with incomplete information.

The reshaped patches [ are then given to the ViT model. In the ViT model, 1 is reshaped
into a sequence of patches I, € RN*(P*PXC) " A linear projection is then applied to ,,, mapping
it to d dimensions to get patch embeddings X € RV*d  Also, a [CLS] token xcrs € RP is used
to aggregate the information. Following [32], [xcys;x] are given as an input to the transformer
blocks without the position embeddings. The ViT model returns the learned patch embeddings
)'d c RN xd .

3.2 Relative Translation Parameterization

A pair of patches (reference, target) are sampled from the image at random positions with
(Xref, yref) and (xig, yigt) as the center pixel coordinates of the two patches in image space.
The two patches are then resized to a uniform patch size P, masking their original position in
the image space, as well as their pixel content. The goal is to learn the underlying translation
between any pair of patches. The translation converts the reference coordinate frame into the
target coordinate frame with the width wi¢ and height A,.¢ of the reference patch. The task is
to predict

ey

ret,tg Ay ref tat (}’tgt - yref)/hl’ef ref tgt

with Ax and Ay capturing relative position. In simple terms, the goal is to move the reference
frame so that it translates into the target frame. In this context, when referring to a "frame",
we specify the bounding box itself rather than the actual pixel contents in the bounding box
(Figure 1).

The emphasis on predicting the relative translation is crucial because information about
the pixel space is lost after resizing to a uniform patch size. Here, the model no longer
possesses details about the original image space. Thus, the two terms we seek to predict are
the translation in x normalized by the width of the reference frame wi¢ and the translation in
y normalized by the height of the reference frame /.

3.3 Cross-attention Projection Head

The ViT model outputs a per-patch representation X’ € RV*4_ The projection head maps the
per-patch representations to the relative translations between a random number of patch pairs
(#pairs), resulting in 6 € R2*#74i"s_The two outputs per patch pair are the relative positions
between the reference and target patches.

Given X', this module selects random index pairs (#pairs) of patches § € N2*#P4irs with S
as the index of the reference patch and S as the index of the target patch. The representations
of reference patches Sy and S| are then concatenated:

N

X = concat(Xg,, Xs,) (2)
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X goes through a linear projection to convert from R#P¢irsx2xd o R#pairsxd ¥ ig fed into a
cross-attention module [29] as the query, and X' is fed as both the key and the value.

é:cross_attention(Q:XJ(:X/,V:X’) 3)

The cross-attention module allows for information dissemination between all patch represen-

tations and enables the model to focus on predicting the relative translation only for a subset
S of patch pairs. This imposes further masking of information given to the model. 6 is only
calculated for the subset S of patch pairs. The model is trained with a mean squared error loss
between the predicted relative translations @ and the ground-truth relative translations 6.

3.4 Supervised Finetuning

After self-supervised pretraining, we finetune the network end-to-end using labeled data
in a supervised setup. The model is initialized with the learned weights from pretraining.
Following the standard ViT configuration, we eliminate the projection head and substitute it
with a linear classification or detection head. Unlike the pretraining phase, where no positional
embedding is trained, we incorporate randomly initialized learnable position embeddings
into the patch embeddings in this stage. Additionally, instead of the random sampling and
masking in the pretraining phase, we perform fixed grid sampling when finetuning.

4 Experiments

In the vision domain, we experiment with a medium-sized classification dataset, CIFAR-
100 [19], ImageNet-1K [8]. We report accuracy, euclidean distance error, and the mean
squared error in x and y dimensions. We finetune with COCO [20] on models pretrained on
ImageNet-1K for detection. In the 1D signal domain, we experiment with single-channel
electroencephalography (EEG) signals extracted from the PhysioNet 2018 "You Snooze You
Win" Challenge Dataset [12]. We report on our method and a grid sampling variant of PART
(PART-grid) for all experiments. Implementation details are in the Supplementary Material.

4.1 Object Detection

Table 1 compares PART with MAE [16], the recent MP3 [32] and DropPos [31] pretraining
methods in the downstream object detection performance. It shows that the random sampling
of patch positions in PART pretraining benefits the detection task, which is sensitive to
location information compared with the PART-grid. On the other hand, DropPos, MP3, and
PART-grid all sample patches from a fixed position grid and perform worse than PART in this
task.

4.2 Image Classification

In Table 2, we compare PART with supervised and state-of-the-art SSL alternatives on the
ImageNet-1K [8] classification benchmark. Our method outperforms the supervised results
as well as MP3 [32] and shows competitive performance with respect to DropPos [16] and
MAE [16] that use position embedding during pretraining. DropPos employs extra position
smoothing and attentive reconstruction techniques that could further accelerate training.
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Table 1: COCO detection performance after finetuning for 1x schedule (12 epochs, or 90k
iterations). All methods use Mask R-CNN with ViTB/16 as the backbone.

AP?  APZ, AP,
MAE(from DropPos) 40.1 60.5 44.1

MP3 41.8 614 46.0
DropPos 42.1 62.0 464
PART-grid 414 60.8 455
PART 424 625 46.8

Table 2: ImageNet-1k classification with ViT-B as backbone. Pos Embed indicates using
position embedding. PT and FT are the number of pretraining and finetuning epochs.

Pos Embed PT FT Accuracy

Supervised v 0 300 81.8
Supervised 0 300 79.1
MP3 400 300 82.59
MAE v 150 150 82.7
DropPos v 200 100 83
PART-grid 400 300 82.43
PART 400 300 82.66

4.3 1D Time Series Classification

PART can also be used to model 1D time-series data by predicting relative time shifts between
patches sampled from a longer sequence. To test this approach, we pretrained a ViT on
biosignals from the PhysioNet 2018 "You Snooze You Win" Challenge Dataset [12]. Our
method improves performance over supervised and self-supervised baseline (Table 3).

Table 3: Sleep stage classification accuracy represented using Cohen’s Kappa. PT and FT are
the number of pretraining and finetuning epochs.

PT FT Cohen’s Kappa

Supervised w/ Pos Embed 0 200 0.431
MP3 500 200 0.508
DropPos 500 200 0.522
PART-grid 500 200 0.500

PART 500 200 0.557
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4.4 Ablation Studies

Sampling strategies. An essential component of our method is the patch sampling process.
Besides random sampling, we ablate on on-grid sampling similar to MP3 and DropPos
(Figure 3). In the grid sampling, all patches are arranged in a grid form, with a fixed size at
fixed positions. PART-grid has a similar patch sampling to MP3 but with a relative objective
function. The results in Tables 1, 2, and 3 suggest that random sampling improves performance
in different tasks and domains compared to PART-grid, while introducing more masking.

PART PART-grid

Prediction  Ground truth

Fixed grid position Random position
Figure 3: PART adopts a random sampling Figure 4: Reconstructing the input image
strategy. Grid sampling strategy (PART- given the predicted relative translations.

grid) is performed as an ablation.

Projection head. Besides the cross-attention projection head in the method, we perform an
ablation study on two other ways to learn this mapping. The most straightforward approach
is a fully connected MLP that receives all patches concatenated as an input and predicts the
translation for any two patches. So, given N patches with d dimensions, the projection head
would have N *d * N” 2 parameters. Although the weights are not shared in this approach like
in the cross-attention head, the projection head can access all patch representations. This helps
the model to converge faster because it can use extra information from other patches. However,
the classification head will replace the projection head during finetuning. The time spent
on training the fully connected MLP can be spent on training better representations instead.
We propose an alternative projection head that compensates for the high parameter count in
the fully connected MLP approach through weight sharing, which we term a pairwise MLP.
The pairwise MLP receives two concatenated patches as its input and predicts their relative
translation. Although this approach uses only 2« d % 2 parameters, the projection head does
not have access to all the patches, thus predicting the translations solely based on the content
of these two patches. Table 4 shows the results for different projection heads. The results
suggest that the cross-attention head (83%) outperforms pairwise MLP (82.52%) and MLP
(82.38%). MLP is computationally more expensive than pairwise MLP and cross-attention.

Table 4: Ablation on different projection heads for CIFAR-100 pretrained for 1000 epochs.

MSEx MSEy Euclideanerror Accuracy

PART MLP 3.18 2.02 1.68 82.38
PART pairwise MLP 2.84 1.76 1.59 82.52
PART Cross-attention 1.14 0.77 0.81 83
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Figure 5: Ablation on the #pairs for CIFAR-100 with 400, 1000, 4000 pretraining epochs.

Number of patch pairs. As explained in Section 3.3, a subset S is randomly chosen from
the patch representations. #pairs is the parameter that determines the length of S. We study
the effect of #pairs in Figure 5 after 400, 1000, and 4000 epochs of pretraining. We observe
that curves follow similar patterns for different epochs of pretraining, while more pretraining
epochs result in higher accuracy. We also observe a trade-off in #pairs. Higher #pairs means
the model sees more patch information but also needs to predict the relative translations for
more contradicting patch pairs. Whereas smaller #pairs means the model has access to less
information, thus overfitting on the task leading to less general representations. There is a
sweet spot with 2048 patch pairs, where enough global patch information is given to the
model, and the training task is neither easy nor difficult.

4.5 Qualitative Analysis

Reconstructions. Figure 4 illustrates the ground truth in the first row and the predictions
for different sampling strategies in the second row. These images are generated by fixing one
random reference patch and positioning all other patches relative to that patch. In the first
row, other patches are positioned based on the ground truth relative position. In the second
row, other patches are positioned based on the model’s output relative position. In the grid
sampling strategy, the ground truth relative positions reconstruct the full image because, in
this sampling, the patches that form the grid cover the whole image. The model’s prediction
almost matches the ground truth, even in small details. The model has learned the general
structure of the scenes. For instance, the sky is on top, and the road is at the bottom of the
image. It has also learned the triangular structure of the clock. However, some details are
missing, such as the hands and the numbers on the clock. It also has difficulties placing
mono-color patches because the model only sees the pixel content of the patches. In PART,
the ground truth patch visualization includes only a subset of the patches, thus providing a
masked input to the model.

Patch uncertainty. We visualize patch uncertainty as a byproduct of our method to check
whether different reference patches agree with each other relative to a single target patch. Our
model predicts the relative translation for both cases where patch i is a reference patch and a
target patch. We visualize Figure 6 by fixing one reference patch and positioning all other
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Ax - ordered Ay - ordered Ax - shuffled Ay - shuffled

Ground truth

Uncertain patch Certain patch

Prediction

Figure 6: Left: The ground truth and the output prediction matrices for translations in x and y
axis for ordered versus unordered patch indices. The ordered matrices are sorted based on
patch positions from the top-left side of the image to the bottom down. The matrices are of
size N x N, where element i, j is the relative translation between the reference patch i and
target patch j. The bright colors are positive numbers, the dark colors are negative numbers,
and the grey color is 0. The color intensity shows the magnitude. Right: We fix a single target
patch and place that patch relative to all reference patches. If the model is certain, it will
always place the patch at the same location.

patches with respect to that patch. Here, we fix one target patch and place that patch relative
to all other reference patches. If all patches are placed at the same location, all reference
patches agree, thus depicting a more certain patch. Patch uncertainty comes as a byproduct of
our method.

Ground truth vs. prediction. Figure 6 shows the final prediction matrix of the model
versus the ground truth matrix. We can see that the ground truth matrix matches the model
prediction for translation in both x and y axes. The most prominent property that emerges from
this figure is the negative symmetry. The negative symmetry is an indication that the model
learns that given two patches P; and P; with F; as the reference patch, the model predicts Ax
and Ay. Whereas, with P; as the reference patch, the model predicts —Ax and —Ay, meaning
that even considering the heavy masking and no global patch information, the model positions
two patches correctly relative to each other.

5 Conclusion

In this work, we introduce PART, a pretraining method that predicts pairwise relative transla-
tions between input patches. By employing a random off-grid sampling strategy and relative
coordinate prediction as a pretext task, PART aims to model the relative spatial relationships
of objects. Our experiments span 2D and 1D data, where PART’s application indicates a
positive impact. Upon finetuning on various downstream tasks such as object detection, image
classification, and time series classification, PART has shown promising results compared
with existing supervised and self-supervised baselines methods. Future work could extend
the application of PART to more diverse datasets and tasks, further refining its capabilities
and understanding its full potential.
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