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Abstract

Weather forecasting is a long-standing scientific challengewith direct social and economic
impact. Solar irradiance forecasting that is closely related to weather forecasting is an
essential task for energy companies; The presence andmovement of water vapormoisture
in the satellite images can help analyze solar properties. The combination of weather
and solar irradiance forecasting is a suitable task for deep neural networks due to vast
amounts of continuously collected data and a rich spatio-temporal structure of data that
does not need annotation. We propose to use a deep neural network that forecasts satellite
imagery and solar irradiance up to 4 hours ahead. These predictions are at the high spatial
resolution of 1 km2 and the temporal resolution of 15 minutes with a latency in the order
of seconds. Our model takes as input EUMETSAT satellite images with 11 channels
and forecasts the preceding satellite images. We evaluate our model’s performance by
measuring solar irradiance at particular solar farms and comparing it with Numerical
Weather Prediction at forecasts of up to 4 hours on continental Europe.
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Introduction

Weather forecasting is the prediction of future weather conditions such as precipitation,
temperature, pressure, and wind and is fundamental to both science and society. The
field joins the forefronts of physical modeling and computing technology into a single
century-long scientific and technological effort [1]. The social and economic benefits of
accurate weather forecasting range from improvements in our daily lives to substantial
impacts on agriculture, energy, and transportation and prevents human and economic
losses through better prediction of hazardous conditions such as storms and floods [2],
[3].

In addition to the inherent complexities of the atmosphere and relevant dynamical
processes, the ever-growing need for real-time, large-scale, and fine-grained precipitation
nowcasting poses extra challenges to the meteorological community. It has aroused
research interest in the machine learning community as well [4] [5].

Operational and conventional weather forecasts are based on Numerical Weather Pre-
diction (NWP) using physics laws to simulate the atmosphere’s dynamics. NWP has
seen substantial advances over the preceding decades due to improvements in the rep-
resentation of the physics, an increase in observational data, and exponential growth in
computing capabilities. These aspects have increased the spatial and temporal resolution
of NWP and have advanced the range of skillful weather forecasts by about one day per
decade. Despite the advances, several challenges remain for NWP [1]. The computational
and power demands of NWP grow as a power of the resolution of the forecast. They also
create a trade-off between the accuracy and time taken of the forecast. The mathematical
formulation of NWP is derived from our current understanding of atmospheric physics,
which might be imprecise or cannot be fully resolved at the model’s resolution.

In this project, we propose to use a neural network that forecasts satellite imagery and
solar irradiance up to 4 hours ahead. These predictions are at the high spatial resolution
of 1 km2 and the temporal resolution of 15 minutes with a latency in the order of seconds.
Our model takes as input EUMETSAT [6] satellite images with 11 channels and forecasts
the preceding satellite images. We evaluate our model’s performance by measuring solar
irradiance at particular solar farms and comparing it with Numerical Weather Prediction
at forecasts of up to 4 hours on continental Europe.
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Background

In the last decade, power grids have faced significant changes in their formandusage. One
of thedriving forces behind this transformationwas increasing electricity consumption. In
addition, the ever-growing global awareness of climate change directed energy companies
into investing in renewable energy resources, like solar and wind energy, which are clean
and serve as a good solution for issues regarding sustainability. Nonetheless, connecting
these resources to electric grids has recently raised some concerns regarding the generated
power fluctuations and their possible negative impacts on network operations.

As a result of these fluctuations, the electric grid could operate unstable, which leads to
technical malfunctions. Furthermore, fluctuations could cause high power swings in the
feeders as well as unacceptable power outages. Concerning these circumstances, energy
suppliers have to calculate the exact amount of their required electricity at a specific time.
In a case when the consumption of electricity does not match the generation, a so-called
imbalance price can be calculated. The objective of the energy farms is to minimize these
imbalance costs. Also, renewable energy supplies production depends greatly onweather
conditions, whereas its usage lies mostly in private consumption. Thus, tools to plan and
calculate electricity generation of solar and wind forecasts are essential. Dexter Energy
Services provides solar and wind forecasts to energy farm operators.

One of the techniques used for very short-range forecasting is Nowcasting. In this
method, based on the current weather, and an estimate of its speed and movement di-
rection is used to forecast the weather a short period ahead. Hereby it is assumed that
the weather moves without notable changes. A short forecast is needed for a detailed
description of the current weather since it takes time to gather and map weather obser-
vations. Nowcasting also includes forecasts collected by extrapolation for a period of 0 to
6 hours ahead, where it is possible to forecast small features (like individual storms) with
reliable accuracy.

Imbalance

The supply and demand for electricity should always remain in balance, especially since
power cannot be stored efficiently. To preserve this equilibrium and make the supply
and demand match, buying and selling electricity should be planned precisely by the
electricity system’s market players. Hence in order to maintain the balance between the
inflowing electricity and the withdrawal of electricity from the electricity grid, regulatory
methods such as issuing imbalance costs are used.

The following explanations and imbalance cost calculations are only accurate for a
specific company (TenneT), which works in the Netherlands and Germany. In general,
methods used to calculate imbalance prices are case-specific and reflect the electricity
price that has to be added or removed from the grid. In total are three roles in the
balancing system:

• Transmission System Operator (TSO): The grid operator responsible for preserving
a stable frequency over the grid. They are set for monitoring, maintaining, and
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restoring the balance between supply and demand of electrical power in a region.
The company TenneT is, in this case, the operator.

• Balance Responsible Party (BRP): All parties connected to the electricity grid must
be accredited BRPs. According to the law, each BRP is obliged to send a precise
schedule to the TSO each day. Any deviance from this trade schedule ist considered
as an imbalance. The BRP parties are financially responsible for this imbalance.
They pay or receive the imbalance price for each imbalance settlement period (ISP),
fixed at 15 minutes.

• Balancing Service Provider (BSP): The BSP is a market party that provides the TSO
with frequency restoration reserves for its balancing task. The main purpose of BSP
is to ensure operational security on the grid. On the other hand, the used resources
are called Frequency Restoration Reserves (FRR) and have the ability to supply or
to store excess electricity production.

Figure 1: The supply-demand curve that is used for merit order calculating day ahead
electricity prices.

Solar Power Prediction

The amount of solar irradiance exposed to the photo-voltaic panel is a practical metric for
calculating solar energy production.

The types of solar irradiance are threefold:

1. Direct Normal Irradiance (DNI): The DNI is measured at the unit’s surface per-
pendicular to the sun. The Direct Normal Irradiance only includes the sun’s direct
beams, while excluding diffuse radiations from other surfaces nearby. Moreover,
atmospheric losses are included in the DNI, but they depend on various factors like
cloud cover, air pollution, moisture, and others.

2. Diffuse Horizontal Irradiance (DHI): The DHI is the second type of solar irradiance,
which does not include direct radiations from the sun, but is measured as the light
gets scattered by molecules and particles in the atmosphere.

3



3. Global Horizontal Irradiance (GHI): The GHI is the total irradiance from the sun on
a horizontal surface on Earth. It accounts for the zenith angle of the sun.

Numerical Weather Prediction (NWP)

The most successful framework to perform medium- and long-range forecast to date is
Numerical Weather Prediction, which can forecast the weather for the coming up to 6
days with high confidence [1].

The core of NWP models are PDEs and other equations that summarize our cur-
rent beliefs and information about the dynamical behaviors in the earth’s atmosphere.
Depending on the use case, target domain, and scale, the exact formulation of NWP
models alters. However, the model variables always include surface-based, airborne, and
satellite-based measurements, such as temperature, moisture, precipitation, wind fields,
and pressure [7]. These models’ accuracy relies on the quality of the initial conditions
and the mathematical formulation’s validity, which means a faithful resemblance of the
initial conditions to the atmosphere’s current state.

These initial conditions are estimated through a complex data assimilation process in
modern NWP models, which leverages a wide range of available information, including
past and asynoptic observations, to improve initialization [8]. Despite such effort, initial
condition errors are inevitable. These errors negatively affect model performance during
the spin-up period [3] and lead to suboptimal short-range forecast. Besides, numerical
solving of the PDEs is computationally critical and contains runtimes of more than one
hour for regional models such as HRRR.

Neural Weather Models (NWM) versus NWP

Here we will mention the main differences of NWM and NWP in terms of weather
nowcasting [9]:

1. NWM leads directly to a probability distribution, while NWP ensembles a set of
deterministic physical simulations using either different initial conditions or model
parameters to output probabilistic prediction, see Figure 2.

2. On the other hand, NWM is constructed from general modules that depend on
the task’s structure but are mostly independent of the underlying domain, such as
convolutions, recurrent connections, whereas NWP relies on explicit phenomena-
dependent physical equations.

3. NWM performance relies on the data available for the task. Besides, these model’s
latency does not depend on the target lead time’s magnitude so that all lead times
can be predicted at once in parallel. While, the simulation in NWP is sequential
along time, and its latency scales linearly with target lead time.

4. A comparison between our model and NWP’s latency shows that in practice, the
latency of DNN based models is in the order of seconds to minutes, for any of the
target lead times, whereas for the latter, it is in order of tens of minutes to hours.

5. Another interesting observation investigates the scalability of the currently designed
models concerning the underlying resolution. Doubling the spatial resolution re-
quires four times more computation using the current architectural choices for our
model, and eight times more computation for NWP [1].
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6. NWP’s performance is inherently tied to the model’s spatial resolution since in-
creased resolution allows direct resolving of more physical phenomena. However,
our model’s performance is not directly related to its resolution since the network
can learn to represent any sub-resolution structure in the hidden layers in a dis-
tributed way.

Figure 2: Properties of NWP and NWMs. Left: A deterministic physical simulation
starting from the initial conditions is performed byNWP, estimating the predictive uncer-
tainty from an ensemble of predictions at slightly different initial conditions. Right: The
NWM approaches the current observations as DNN’s direct inputs to directly estimate
the distribution over future conditions. p(y|x). Image courtesy of [9]

Due to these factors, there is a potential to improve forecasts using real-time and
accurate neural network modeling.
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Related Work

Deep neural networks (DNN) have seen exceptional progress in recent years due to
increased amounts of data, better model architectures, ease of implementation, and pow-
erful specialized hardware such as GPUs and TPUs [10]. The recently introduced DNN
architectures can effectively process and use spatial and temporal (spatio-temporal) con-
texts in the input data [11], [12]. These models can produce probabilistic outputs and
represent uncertainty in the predictions. The performance improves with increasing
amounts of training data, while the specification of the DNNs remains easy to com-
prehend and maintain. These properties make DNNs especially promising for weather
forecasting/nowcasting:

1. The vast amount of continually collected data from satellites, ground-based radars,
and weather stations requiring no human annotation.

2. The immense computational requirements of weather forecasting using conven-
tional simulation methods.

3. The rich spatio-temporal structure of the inputs, and predictions and the inherent
need to represent uncertainty.

Precipitation Nowcasting and Video Prediction

In the precipitation nowcasting problem, radar echo maps’ reflectivity factors are first
transformed to grayscale and then fed into the prediction algorithm [4]. Precipitation
nowcasting can be seen as a video prediction problem with a fixed camera, the weather
radar. Hence, the proposed methods for video prediction tasks are applicable to precip-
itation nowcasting. There are three types of architectures for video prediction: 2D CNN
based models and 3D CNN based models, and RNN based models.

2D and 3D CNN based models are proposed in [13] and [14]. [13] treats the frame
sequence as multiple channels and applies 2D CNN to generate the prediction while [14]
treats them as the depth and applies 3D CNN, see Figure 3 for the general architecture.

The firstRNN basedmodel for video prediction [16] uses a convolutional RNNwith 1×
1 state-state kernel to encode the observed frames. The LSTM encoder-decoder network is
proposed by [17], which uses one LSTM to encode the input frames and another to predict
multiple frames ahead. The model’s generalization was proposed in [4] by replacing the
fully-connected LSTM with ConvLSTM to better capture the spatiotemporal correlations,
which is better suited for image sequence prediction rather than text prediction. Later, the
model was extended by predicting the input frame’s transformation instead of directly
predicting the raw pixels [18], [19]. [20] proposed to use both the RNN that captures the
motion and the CNN that captures the spatial information to generate the prediction.

6



Figure 3: Illustration of the 2D/3D CNN encoder-forecaster. In this example, 4 convolu-
tion layers are used to get the representation of the 5 input frames, which is further used
to predict the 5 future frames. The convolution blocks can be either 2D or 3D [15].

Restructured Recurrent Connections for Spatio-Temporal Model-
ing

From a higher-level perspective, precipitation nowcasting and video prediction are intrin-
sically spatio-temporal sequence forecasting problems where both the input and output
are spatio-temporal [4]. Recently, there has been a trend of replacing the fully-connected
structure in the recurrent connections of RNN with other topologies to enhance the
network’s ability to model the spatio-temporal relationships. In the ConvLSTM [4], the
full-connections are replaced with convolutions, which is designed for dense videos. The
SocialLSTM [21] defines the topology based on the distance between different people and
is designed for human trajectory prediction. The Structural-RNN (S-RNN) [22] defines the
structure based on the given spatiotemporal graph. The TrajGRU [15] the model actively
learns the location-variant structure for recurrent connections. It aims at learning the lo-
cal correlation structure for spatiotemporal data. MetNet [9] uses a ConvLSTM plus axial
self-attention layer to aggregate the global context from a large input patch corresponding
to a million square kilometers.
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Methodology

Input

Our model receives as input a five-dimensional tensor of size [b, t, w, h, c] that corre-
sponds to dimensions batch size, time, height, width and number of channels. The time
dimension comprises t slices sampled every 15 minutes over a 4-hour interval prior to Tx,
where Tx is the time at which the model makes a prediction into the future. The channels
comprise the 11 spectral bands of the EUMETSAT satellite images.

Encoding-forecasting Structure

We adopt a similar formulation of the precipitation nowcasting problem as in [15]. The
satellite input images form a spatio-temporal sequence I1, I2, ..., Ix. At a given times-
tamp x, our model generates the most likely next K-step predictions, Îx+1, Îx+2, ..., Îx+K
, based on the previous observations. The encoding-forecasting network first encodes
the observations into 3 layers of RNN states: H1, H2, H3 = h(I1, I2, ..., Ix), and then uses
another 3 layers of RNNs to generate the predictions based on these encoded states:
Îx+1, Îx+2, ..., Îx+K = g(H1, H2, H3). Figure 4 illustrates the encoding-forecasting struc-
ture. There are downsampling and upsampling layers between the RNNs, which are
implemented by convolution and deconvolution with stride. The UNet structure helps
enhance the low-level states being guided by the high-level states, which have captured
the global spatio-temporal representation. Moreover, the low-level states could further
influence the prediction. One can choose any type of RNNs like ConvGRU in this general
encoding-forecasting structure as long as their states correspond to tensors.

Convolutional GRU

The main formulas of the ConvGRU [23] used in this work are in Equation 1. ’*’ is the
convolution operation and ’◦’ is the Hadamard product. The bias terms are omitted for
notational simplicity. Ht, Rt, Zt, H′t ∈ RCh×H×W are the memory state, reset gate, update
gate, and new information, respectively. Xt ∈ RCi×H×W is the input and f is the leaky
ReLU [24] activation function with a negative slope of 0.2. H, W are the height and width
of the state and input tensors and Ch , Ci are the channel sizes of the state and input
tensors, respectively. Every time a new input arrives, the reset gate will control whether
to clear the previous state and the update gatewill control howmuch the new information
will be written to the state.

Zt = σ(Wxz ∗ Xt + Whz ∗ Ht−1)

Rt = σ(Wxr ∗ Xt + Whr ∗ Ht−1)

H′t = f (Wxh ∗ Xt + Rt ◦ (Whh ∗ Ht−1))

Ht = (1− Zt) ◦ H′t + Zt ◦ Ht−1

(1)
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Figure 4: Example of the encoding-forecasting structure used in [15]. In the figure, we use
three RNNs to predict two future frames Î3 and Î4 given the two input frames I1 , I2 . The
spatial coordinates G are concatenated to the input frame to ensure the network knows
the observations are from different locations. The RNNs are ConvGRU blocks. Zeros are
fed as input to the RNN if the input link is missing.
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Experimental Setup

Datasets

Moving MNIST [4]

In this dataset, each video is 20 frames long and consists of two digits moving inside a
64× 64 patch. The digits are chosen randomly from the MNIST training set and placed
at random locations inside the initial patch. Each digit is assigned a velocity whose
direction is chosen uniformly randomly on a unit circle and whose magnitude is also
chosen uniformly at random over a fixed range. The digits bounce-off the edges of the
64× 64 frame and overlap if they are at the same location.

Dexter Dataset

EUMETSAT: EUMETSAT "Rapid Scan High Rate SEVIRI Level 1.5 Image Data - MSG" [6]
is an image stream provided by geostationary satellites orbiting the earth. The captured
raw data is processed and is one of the Meteosat Second Generation (MSG) system’s
main products. The designation "Level 1.5" corresponds to image data that has been
corrected for all unwanted radiometric and geometric effects. It has been geolocated
using a standardized projection and has been calibrated and radiance-linearised. The
Level 1.5 data is suitable for derivingmeteorological products and further meteorological
processing. The SEVIRI instrument is designed to produce the earth’s image from a
spinning geostationary satellite, see Figure 5.

Figure 5: The SEVIRI instrument is designed to produce the image of the Earth from a
spinning geostationary satellite. Image courtesy of [25].

It is a time series of images every 5 minutes. The images are provided in 12 channels,
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corresponding to the 12 spectral bands. They vary in spectral characteristics, dynamic
range, the detectors’ operating temperature, and the number of detectors simultaneously
acquiring image information. A short description of the 11 spectral channels that were
used in this work are the following:

1. VIS0.6, VIS0.8: These channels are in the human visible wavelengths. Used for
cloud detection, cloud tracking, location identification, aerosol, land surface, and
vegetation monitoring.

2. IR1.6: Near Infrared channel. Discriminates between snow, cloud, ice, and water
clouds, provides aerosol information.

3. IR3.9: Primarily for low cloud and fog detection. It also supports the measurement
of land and sea surface temperature at night and increases the low-level wind
coverage from cloud tracking.

4. WV6.2, WV7.3: These two channels are the water vapor channels for observing
water vapor and winds.

5. IR8.7: The channel provides quantitative information on thin cirrus clouds and
supports the discrimination between ice and water clouds.

6. IR9.7: This channel contains ozone radiances. It is possible to use it as input to an
NWP. Wind motion in the lower stratosphere and the state of the ozone field can be
observed.

7. IR10.8, IR12.0: Cirrus clouds, volcanic ash clouds can be detected in this band, and
temperatures could be inferred.

8. IR13.4: The CO2 absorption channel. In cloud-free areas, it will contribute to
temperature information from the lower troposphere.

The HRV channel was not used due to the images being much higher resolution and
causing errors with memory constraints in the preprocessing phase.

Train and Validation Splits: The training data are satellite images from August 2016
to July 2017, from 8:15 to 17:00 every 15 minutes; 36 images per day each with 11 black
and white channels, without the HRV channel. The first 18 images per day are given as
input, and predictions are compared to the rest of that day’s images. The validation data
are satellite images with the same characteristics from August 2015 to July 2016.

The solar irradiance measure of 15 solar farms across Europe on the same days is used
as ground-truth.

Preprocessing: Each image is cropped only to include Europe. Since they are geo-
stationary photos of a geoid shape, they require a computationally heavy preprocessing
step to be converted to a near equidistant version, here we use the Transverse Mercator
Projection. Each image is converted from its geostationary projection with an offset to the
east by 9.5° to an equidistant projection. Unfortunately, the ideal equidistant projection
is impossible, as the earth is a 3D sphere and the target projection is a 2D plane. The
solution is to use a projection where the designated target area, Europe, has little distance
error on average. In this project, we use the Transverse Mercator Projection because, as
shown in Figure 6, Europe is in the middle line of it where there is the least distortion.
The images are captured in a geostationary viewpoint. Every pixel represents the same
location in all images; thus, a mapping for each pixel to their corresponding latitude and
longitude values is created. The PROJ.4 library was used for the conversion. Using a pixel
tometers ratio from the data description EUMETSAT (2017), each coordinate’s pixel value
is calculated and then placed on the original image grid, linearly interpolating between
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the pixels of the original image. Finally, the transformed images and a lookup table make
the two-way conversion possible, from pixel coordinates to geolocation and reverse. This
is useful at the feature extraction phase.

Figure 6: Left: Normal Mercator projection. Right: Transverse Mercator projection. In
the tropics, where the cylinder is close to the Earth’s surface, the representations are most
accurate. Image courtesy of [26].

NWP Baseline: We use the European Centre for Medium-Range Weather Forecasts
(ECMWF) [27] data as our baseline for solar nowcasting.

Implementation Details

The detailed network configurations of our model is described in Table 7.

Figure 7: The details of the ConvGRU model. The In Kernel, In Stride and In Pad are the
kernel, stride and padding in the input-to-state convolution. State Ker. and State Dila. are
the kernel size and dilation size of the state-to-state convolution. k and d are set as stated
in [15]. The In State is the initial state of the RNN layer.

Training Details

We use the Mean Squared Error (MSE) loss for training and evaluation. Our model is
trained using the Adam optimizer [28] with learning rate equal to 10−4 and momentum
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equal to 0.5. We use the encoding-forecasting structure introduced previously with three
RNN layers. The numbers of filters for the three RNNs are 64, 96, 96 respectively. All
RNNs are ConvGRU and all use the same set of hyperparameters. We train for 200, 000
iterations with norm clipping threshold equal to 10 and batch size of 4.

Evaluation Metric

We evaluate the Moving MNIST image results by comparing the MAE of our implemen-
tation of ConvGRU with the results in [15], to justify its correct implementation.

We evaluate the EUMETSAT image results of our model against the NWP data by com-
paring their MSE. The Mean Average Error of GHI solar irradiance values at the specified
solar farms between the predictions and the ground-truth is used as an evaluation for
how well the model generalizes to solar nowcasting. The evaluation is done for 1/2/3/4
hours ahead and averaged over all solar farms.
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Results

Moving MNIST Results

Before evaluating our model on the more challenging solar nowcasting task, we first
compare the MSE of our implementation of ConvGRU with the results in [15], to justify
its effectiveness and correct implementation in Table 1. As the results are close, they
suggest correct implementation of the paper.

Table 1: Comparison of ConvGRU implementation and the baseline ConvGRU imple-
mented in [15] on the MovingMNIST dataset.

our implementation ConvGRU baseline

#parameters 2.84M 2.84M
Test MSE ×10−2 1.463 1.495

We also evaluate the quality of the generated images by visualizing them in Figures 8,
9, 10. At each iteration, a sequence of 10 images (ground-truth, top row) and the predicted
(bottom row) are visualized. The samples are taken randomly every 10000 iterations. We
can observe how the model learns to make more precise predictions in time during the
training, even with overlapping digits.

EUMETSAT Results

We compare the qualitative performance of our neural weather model with the NWP
baseline in Table 2. The closeness of results suggest that we can achieve sufficient per-
formance only using satellite images that use shorter inference time and not as much
compute power for weather simulations. As expected, the error is higher as the predic-
tion time-gap increases. The NWP outperforms our model for 1 hour ahead predictions
but as time passes by our model outperforms the NWP except for the 4 hour ahead.

Table 2: Comparison of MAE of the NWP and the NWM on the EUMETSAT dataset for
the specified solar farms.

Numerical Weather Prediction Neural Weather Model

1/2/3/4 hours 0.073/0.098/0.169/0.184 0.088/0.097/0.152/0.185

Like for theMovingMNIST dataset, we also evaluate the qualitative performance of the
generated images by visualizing only one channel in Figures 11, 12, 13. At each iteration,
a sequence of 18 images (ground-truth, top row) and the predicted (bottom row) are
visualized. The samples are taken randomly every 10000 iterations. We can observe
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how the model learns to make more precise predictions in time during the training. The
predictions are less precise and more blurry which is probably why the solar prediction
results are not always better than NWP. You can also see the predictions for up to 4 hours
ahead are of good quality and probably why our model almost always outperforms the
NWP in the long-range.
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(a) Iteration 0

(b) Iteration 10000

(c) Iteration 20000

(d) Iteration 30000

(e) Iteration 40000

(f) Iteration 50000

(g) Iteration 60000

Figure 8: At each iteration, the upper sequence of 10 images are the ground-truth and the
lower sequence of 10 images are the predictions. The samples are taken randomly every
10000 Iterations.
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(a) Iteration 70000

(b) Iteration 80000

(c) Iteration 90000

(d) Iteration 100000

(e) Iteration 110000

(f) Iteration 120000

(g) Iteration 130000

Figure 9: At each iteration, the upper sequence of 10 images are the ground-truth and the
lower sequence of 10 images are the predictions. The samples are taken randomly every
10000 epochs.
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(a) Iteration 140000

(b) Iteration 150000

(c) Iteration 160000

(d) Iteration 170000

(e) Iteration 180000

(f) Iteration 190000

(g) Iteration 200000

Figure 10: At each iteration, the upper sequence of 10 images are the ground-truth and
the lower sequence of 10 images are the predictions. The samples are taken randomly
every 10000 epochs.
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(a) Iteration 0

(b) Iteration 10000

(c) Iteration 20000

(d) Iteration 30000

(e) Iteration 40000

(f) Iteration 50000

(g) Iteration 60000

Figure 11: At each iteration, the upper sequence of 18 images are the ground-truth and the
lower sequence of 18 images are the predictions for one of the 12 channels. The samples
are taken randomly every 10000 iterations.
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(a) Iteration 70000

(b) Iteration 80000

(c) Iteration 90000

(d) Iteration 100000

(e) Iteration 110000

(f) Iteration 120000

(g) Iteration 130000

Figure 12: At each epoch, the upper sequence of 18 images are the ground-truth and the
lower sequence of 18 images are the predictions for one of the 12 channels. The samples
are taken randomly every 10000 iterations.
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(a) Iteration 140000

(b) Iteration 150000

(c) Iteration 160000

(d) Iteration 170000

(e) Iteration 180000

(f) Iteration 190000

(g) Iteration 200000

Figure 13: At each iteration, the upper sequence of 18 images are the ground-truth and the
lower sequence of 18 images are the predictions for one of the 12 channels. The samples
are taken randomly every 10000 iterations.
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Figure 14: Every 2 rows show the ground-truth and the prediction of a specific weather
channel. There are 12 channels in total. This figure shows a random sample from the final
trained model.
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Conclusion

In thiswork, we examinedweather forecasting as a long-standing scientific challengewith
direct social and economical impact. One of the main weather forecasting applications
is in power grid imbalance prediction that helps reduce power fluctuations on the grids.
We hypothesized that solar irradiance nowcasting is possible with satellite images since
the presence and movement of water vapor moisture in the satellite images can help
analyze solar properties. Solar irradiance forecasting is a closely related task to weather
forecasting. The combination of weather and solar irradiance forecasting is a suitable
task for deep neural networks due to vast amounts of continuously collected data and
a rich spatio-temporal structure of data that does not need annotation. We proposed to
use a deep neural network that forecasts satellite imagery and solar irradiance up to 4
hours with a spatial resolution of 1 km2 and the temporal resolution of 15 minutes and
a latency in the order of seconds. We evaluated our model’s performance by measuring
solar irradiance at particular solar farms and comparing it with NWP at forecasts of up to
4 hours on continental Europe and concluded that neural weather models could achieve
almost the same results as in NWP but with less latency and compute power.
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