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Abstract. Hyperbolic geometry has shown to be highly effective for em-
bedding hierarchical data structures. As such, machine learning in hyper-
bolic space is rapidly gaining traction across a wide range of disciplines,
from recommender systems and graph networks to biological systems and
computer vision. The performance of hyperbolic learning commonly de-
pends on the hierarchical information used as input or supervision. Given
that knowledge graphs and ontologies are common sources of such hierar-
chies, this paper aims to guide ontology designers in designing hierarchies
for use in these learning algorithms. Using widely employed measures of
embedding quality with extensive experiments, we find that hierarchies
are best suited for hyperbolic embeddings when they are wide, and single
inheritance, independent of the hierarchy size and imbalance.
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1 Introduction

Knowledge graphs and ontologies provide a rich source of hierarchical informa-
tion, such as the classification of creative works in Schema.org 1 or the organi-
zation of professions in Wikidata 2. This hierarchical structure is well-suited for
machine learning, particularly in hyperbolic learning, which utilizes hyperbolic
geometry to embed tree-like structures into low-dimensional spaces [45]. Such
embeddings have been shown to enhance performance in tasks like image and
video classification [29,36,37], audio understanding [24,52], and recommender
systems [34,62,64]. Throughout the literature [45,49], hyperbolic representation
learning approaches typically assume that hierarchies are provided as is. How-
ever, ontology engineers consider multiple factors when designing ontologies be-
yond representing the domain (e.g. reusing existing ontologies, use concepts for
interoperability, end user tasks). This work seeks to offer insights for ontology en-
gineers in crafting hierarchies optimized for hyperbolic hierarchical embeddings.
Unlike previous studies, which focus on improving hyperbolic embeddings for a
given hierarchy, we address the reverse question: how can hierarchies be designed
to enhance their suitability for embedding in hyperbolic space? Specifically, we
conduct controlled experiments to examine how different tree structures affect
1 https://schema.org/
2 https://www.wikidata.org/wiki/Wikidata:Main_Page
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the quality of embeddings produced by two primary classes of hyperbolic embed-
ding algorithms: gradient-based and construction-based methods. Embedding
quality is evaluated using distortion metrics [55], which quantify the discrepancy
between distances in the embedding space (calculated via a continuous distance
function) and the original graph distances (defined by the edge count between
nodes). Our objective is to uncover the key axes of hierarchy design that influ-
ence the effectiveness of hyperbolic embeddings. Our results demonstrate that
hierarchies optimized for width, rather than height, are best suited for hyperbolic
embeddings. Hierarchy imbalance and size are shown to have minimal impact,
while multiple inheritance should be avoided. We validate these findings us-
ing a real-world scenario, where alternative semantic organizations significantly
reduce distortion. These results complement existing approaches to ontology de-
sign and evaluation by providing actionable insights for ontology engineers to
enhance downstream embedding quality. We hope these recommendations assist
ontology designers when downstream hyperbolic embedding performance is a
priority. In summary, the contributions of this paper are as follows:

➠ In-depth empirical study: We perform in-depth analyses across four hy-
perbolic embedding algorithms to examine the impact of hierarchy structure
on embedding quality.

➠ Practical recommendations: Our experiments lead to four recommenda-
tions for ontology engineers on structuring hierarchical portions of ontologies.

➠ Real-world case study: We validate our recommendations on real-world
use cases, highlighting the inherent trade-off between ontological design goals
and downstream utility in continuous hyperbolic spaces.

Our recommendations apply to various real-world scenarios requiring hier-
archical data in continuous spaces, such as: recommender systems (e.g. prod-
uct/content hierarchies), drug discovery (e.g., gene Ontology, SNOMED CT),
and biological analysis (e.g. protein families). Code is openly available here 3.

2 Related Work

2.1 Hierarchy and ontology design

Hierarchies, particularly taxonomic backbones, whether formal or informal, play
a critical role in ontology and knowledge graph design [22,28,44]. They organize
complex domains [57] into manageable components and enable various forms
of reasoning, such as subsumption. Changes in hierarchy structure can have a
significant downstream impact on applications [51]. Therefore, ontology design
methodologies provide guidance on crafting hierarchies to reflect domain con-
straints and ensure proper reasoning outcomes [28,53].

Works focused on the evaluation of ontologies also consider hierarchy [20,43].
These studies assess aspects such as whether a hierarchy correctly partitions
instances, whether there are cycles of specialization and generalization, and

3 https://github.com/Melika-Ayoughi/Optimal-Hierarchy
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whether instance assertions are semantically accurate [20]. Other evaluation ap-
proaches adopt principled criteria and metrics based on formal notions (e.g.
unity) [3,17,18]. Examples of criteria include the complexity of the hierarchy
(e.g. number of classes, depth, number of top level classes) as well as conciseness
(e.g. cycles, and classes without instances) [50]

In ontology induction and knowledge graph construction, the creation of
high-quality hierarchies is a critical consideration [69,63]. Evaluation typically
involves expert review, comparison with gold-standard ontologies, or the appli-
cation of aforementioned established evaluation criteria. Our work complements
these existing recommendations, metrics, and evaluation approaches [43] by pro-
viding ontology engineers with guidance on designing hierarchical structures to
enable machine learning tasks.

2.2 Learning over knowledge graphs using hierarchies

A significant body of work leverages hierarchical information within knowledge
graphs to enhance machine learning tasks [27]. These tasks include link predic-
tion [6,70], question answering [11], and query answering using embedding spaces
[25]. Additionally, research has focused on creating embeddings for knowledge
graphs with complex semantics [5]. Our work differs by providing guidance to
ontology engineers on designing hierarchies, rather than focusing on embedding
design for existing knowledge graphs.

2.3 Hyperbolic representation learning

We focus on hyperbolic embeddings, because they demonstrate superior per-
formance in representing hierarchical data structures compared to Euclidean
methods. In early work, Sarkar [56] introduced Delaunay tree embeddings in
hyperbolic space, demonstrating the potential of hyperbolic geometry to achieve
tree embeddings with arbitrarily low distortion. However, Sarkar’s construction-
based algorithm is limited to 2D embeddings, reducing its expressiveness and
applicability in deep learning contexts. To address this limitation, Nickel and
Kiela [46] proposed a contrastive approach that supports embedding optimiza-
tion in any dimensionality, significantly outperforming Euclidean embeddings on
trees. This line of work has been extended through entailment cones to induce
partial hierarchical order [14,66], adapted to the Lorentz model of hyperbolic
space [32,47], and improved by incorporating distortion [67] or separation [38]
objectives during optimization. Subsequently, Sala et al. [55] expanded Sarkar’s
construction-based approach to higher-dimensional embeddings. Overall, these
algorithms, whether optimized via gradient descent or constructed explicitly,
consistently outperform Euclidean embeddings. This superiority stems from the
insight that "hyperbolic space can be thought of as a continuous analogue to
discrete trees" [47], owing to their shared nature of exponential growth.

In light of the strong performance of hyperbolic representation learning, nu-
merous studies have integrated hyperbolic embeddings into neural networks, en-
abling deep learning to incorporate hierarchical knowledge. Hyperbolic learning
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have been shown to improve recognition across various domains, including im-
age and video classification [29,36,37], word embeddings [10,33], recommender
systems [34,62,64], audio understanding [24,52], single-cell analysis in biology
[31], networks and graphs [60,65,71], and image-text settings [8,26,30,48]. Be-
yond classification, hyperbolic representations facilitate hierarchical recognition
[9,16], learning from limited samples [15,23,41,68], interpretability [19], robust-
ness [35,58], and other tasks. For a comprehensive overview of advances in hy-
perbolic learning, we refer to recent surveys [45,49]. A common assumption in
the literature is that hierarchical information is known and fixed a priori. In
this work, we flip the perspective to investigate how different hierarchical de-
signs affect hyperbolic embeddings, aiming to potentially enhance integration of
hierarchical ontologies in hyperbolic deep learning.

3 Hyperbolic embedding algorithms for hierarchical data

3.1 Preliminaries

Throughout this work, we are given a tree-like data structure T = (V,E), con-
taining a set of nodes V and a set of edges E, with each edge e ∈ E connecting
two vertices. We strive to obtain a continuous analogue of T by embedding each
node v ∈ V in an embedding space, such that the distance between two nodes
corresponds one-to-one to the shortest path between the nodes in the tree, as
given by the number of edges between them. Let ϕ : V 7→ Dn denote the em-
bedding function that takes nodes as input and outputs their embedding in an
n-dimensional hyperbolic space Dn.

Following [14,46,55], we will operate in the Poincaré ball model of hyperbolic
space for the embeddings. For an n-dimensional space, let (Dn, gn) denote the
Riemannian manifold of the Poincaré ball model, given as:

Dn =
{
x ∈ Rn : ||x||2 < 1

}
, gn = λxIn, λx =

2

1− ||x||2
. (1)

A key operator for hyperbolic embedding algorithms is the distance between two
vectors in hyperbolic space. Here, it denotes the distance between the embed-
dings of two nodes. For nodes v1,v2 ∈ Dn, the distance is given as:

dD(v1,v2) = 2 tanh−1
(
|| − v1 ⊕ v2||

)
, (2)

where ⊕ denotes the Möbius addition, defined as:

v1 ⊕ v2 =
(1 + 2⟨v1,v2⟩+ ||v2||2)v1 + (1− ||v1||2)v2

1 + 2⟨v1,v2⟩+ ||v1||2||v2||2
. (3)

Using this manifold and distance function, we outline below how different algo-
rithms generate hyperbolic embeddings for hierarchical data. We focus on two
types of algorithms: general-purpose methods that optimize embeddings via gra-
dient descent and hierarchy-specific approaches that constructively embed trees.
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3.2 Gradient-based hyperbolic embeddings

Gradient-based hyperbolic embeddings are general-purpose approaches that take
any graph structure as input and yield a hyperbolic embedding of each node,
where the embedding uses the edges between nodes as objective. In this work, we
investigate two canonical approaches: Poincaré Embeddings [46] and Hyperbolic
Entailment Cones [14].

Poincaré Embeddings. In the seminal work of Nickel and Kiela [46], the goal
is to embed V using contrastive learning with edges E as positive pairs. Let
Θ = {θi}|V |

i=1 denote the embeddings of nodes in hyperbolic space. The estimation
of Θ optimized under the following objective:

Θ∗ = argmin
Θ

L(Θ), s.t. ∀θi ∈ Θ : ||θi|| < 1. (4)

Here, the loss is determined by the edges that connect two nodes. Specifically in
the context of tree-like structures, edges denote hypernym-hyponym relations.
With D the set of hypernym-hyponym relations the contrastive loss is given as:

L(Θ) =
∑

(u,v)∈D

log
exp(−dD(u, v))∑

v′∈N(u) exp(−dD(u, v′))
, (5)

with N(u) denoting the set of nodes not directly connected to u. To optimize Θ,
the parameters are initialized as random vectors in a unit ball of dimensionality
d and subsequently optimized using gradient descent in hyperbolic space [2,4].

Hyperbolic Entailment Cones. A limitation of the contrastive loss in Poincaré
Embeddings is the absence of an explicit objective to preserve hierarchical order.
Consequently, nodes deep in the hierarchy may be placed near the origin, reduc-
ing the utility of their embeddings. To address this, Ganea et al. [14] reinterpret
hierarchical relations as partial orderings defined by cones in hyperbolic space.
They extend the contrastive loss to a max-margin variant, aiming for each par-
ent node u to encapsulate its child nodes v. Specifically, each child v must fall
within the entailment cone of its parent u. The loss is defined as:

L =
∑

(u,v)∈D

E(u, v) +
∑

(u′,v′)∈A\D

max(0, γ − E(u′, v′)), (6)

with A the set of all node pairs, γ a margin, and the energy loss given as:

E(u, v) = max(0, Ξ(u, v)− ψ(u)), (7)

where ψ(u) denotes the aperture of the cone based on its root point u, or equiva-
lently: the size of the entailment cone. The closer u is to the origin, the larger its
aperture, reflecting the intuition that points near the origin correspond to higher
levels in the tree structure. Lastly, Ξ(u, v) measures the angle between u and v.
If v has a higher norm and its angle relative to u is smaller than the aperture
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of u, the embedding is considered correct, and no loss is incurred. Otherwise,
the loss scales with the angular error. Similar to Poincaré Embeddings, this ob-
jective can be directly optimized using gradient descent in hyperbolic space. In
practice, nodes are initialized with Poincaré Embeddings and refined using the
Hyperbolic Entailment Cones objective.

Algorithm 1 Construction-based hyperbolic tree embeddings [55]
1: Input: Tree T = (V,E), scaling factor τ > 0 and root node v1 with ϕ(v1) = 0.
2: for v ∈ V do
3: Isometrically reflect ϕ(v) to the origin and apply the same to its parent.
4: Generate x1, . . . ,xdeg(v) uniformly distributed points on a unit hypersphere.
5: Rotate the points such that x1 is aligned with the reflected parent embedding.
6: Scale x1, . . . ,xdeg(v) according to τ and the tree distance to v.
7: Reflect rotated and scaled points back.
8: end for

3.3 Construction-based hyperbolic embeddings

Gradient-based approaches are general-purpose and operate on a wide range of
graphs, including those that are not strictly acyclic or have nodes with multiple
inheritance, as in the case of Poincaré Embeddings [46]. However, this versatility
often comes at the expense of embedding quality, with the resulting hyperbolic
embeddings Θ of the nodes V retaining only partial information from the origi-
nal graph. In contrast, construction-based methods [55,56] embed trees directly,
sacrificing flexibility in the types of graphs they can handle in favor of producing
high-quality embeddings that preserve nearly all the original tree structure.

The general approach of construction-based methods is outlined in Algorithm
1. These methods embed a root node at the origin and iteratively traverse the
tree, positioning each child node on a sphere centered around its parent. This
approach offers strong theoretical guarantees for low distortion and is highly ef-
ficient, with linear complexity relative to the number of nodes, avoiding complex
optimization problems. However, these methods are limited to tree structures
and often require arbitrary-precision arithmetic to achieve low-distortion em-
beddings.

The core distinction among the construction-based hyperbolic embeddings
lies in step 4 of Algorithm 1. The distortion of the resulting embedding depends
heavily on the degree of separation between the generated points. However, gen-
erating an arbitrary number of uniformly separated points on an n-dimensional
hypersphere remains an open problem [54]. Sala et al. [55] propose two ap-
proaches for generating hyperspherical points at this step. The first involves
placing points at the vertices of a hypercube inscribed within the hypersphere,
leveraging coding theory [42]. Specifically, they use the Hadamard code, en-
abling the placement of 2⌊log2 n⌋ points with a fixed pairwise distance. While this
method is computationally efficient and produces predictable results, it suffers
from poor separation between points, resulting in higher distortion. Additionally,
it imposes a strict requirement on the dimension n, namely:

2⌊log2 n⌋ ≥ degmax(V ). (8)
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Their second approach involves precomputing 1000 hyperspherical points using
the method from [39] and sampling from these as needed. This method often
results in lower distortion compared to the first approach and offers greater
flexibility regarding the dimension n. However, it has drawbacks, including higher
variance in results, with problematic outliers for certain trees, and increased
computational cost for smaller trees.

In terms of scalability, the Hadamard method is highly efficient, as an n× n
Hadamard matrix can be constructed in O(log2(n)) time. The precomputed
method incurs minimal initial computation but later only requires tensor sam-
pling. Overall, constructive methods are significantly faster than optimization-
based methods.

4 Experimental setup
4.1 Data

Hierarchies for controlled experiments. For our first experiment we generate a
variety of tree structures using the NetworkX library [21] withN = 256, 512, 1024
nodes to evaluate how different hierarchical structures affect the hyperbolic rep-
resentation learning. The selected trees encompass diverse structural properties
and are defined as follows:

➠ Full r-ary trees (balanced) We generate full r-ary trees [59] with r values
ranging from 2 to 5. In an r-ary tree, all non-leaf nodes have exactly r children
and all levels are full except for some rightmost position of the bottom level
(if a leaf at the bottom level is missing, then so are all of the leaves to its
right, resulting in trees of varying branching factors and depths. Intuitively,
higher values for r result in wider trees lower values for deeper trees r.

➠ Binomial tree (imbalanced) A binomial tree is constructed iteratively, with
each step having twice the number of nodes as the previous step, forming a
hierarchical structure. A binomial tree of order k is defined recursively by
linking two binomial trees of order k−1, where the root of one is the leftmost
child of the root of the other. Thus, the tree grows imbalanced.

➠ Barabási–Albert tree (long-tailed) The Barabási–Albert graph [1] of n
nodes is generated by attaching new nodes each with m edges that are pref-
erentially attached to existing nodes with high degree, namely preferential
attachment. We generate Barabási–Albert graphs with m = 1, which is guar-
anteed to form a tree. This trees’ degree distribution follows a power-law
distribution (P (k) = k−3). The resulting tree captures the scale-free nature
observed in many real-world networks, where a few nodes have a high degree
and most other nodes have a small degree.

These trees are chosen to represent a diverse range of topologies, from balanced
and uniform (r-ary trees) to skewed (binomial and Barabási–Albert trees) [40],
while simultaneously allowing us to have control over the number of nodes to
enable direct comparisons between different hierarchical organizations. They are
visualized for n = 16 in Figure 1.
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2-ary Tree 3-ary Tree 4-ary Tree Binomial Tree Barabási–Albert Tree5-ary Tree

Fig. 1. The different hierarchies and their degree histograms used in our
experiments. We investigate various balanced (r-ary trees) and imbalanced trees (bi-
nomial and Barabási-Albert trees) to help us understand which dimensions of hierarchy
design are most important for their hyperbolic embedding.

Real-world use cases. To investigate the potential impact of our findings in real-
world scenarios, we use the ImageNet[7] 4 (based on WordNet[12]) and Pizza 5

ontologies as case studies, demonstrating the influence of alternative ontology
designs on the quality of hyperbolic embeddings. The original ontologies, com-
prising 1778 and 100 nodes respectively, contain multiple inheritance and are
non-tree structures. For each ontology, we construct a single inheritance version
by applying the DFS algorithm to extract a spanning tree [61]. To minimize
tree height while preserving the number of nodes, we restructure the hierarchy
by merging the children of parent nodes into siblings. This reduces the height
of ImageNet hierarchy from 13 to 8 and Pizza hierarchy from 7 to 5 in the
reorganized ontologies.

4.2 Implementation details

In our experiments, we analyze the impact of varying embedding dimensions. For
the controlled experiment with generated trees, we use embedding dimensions
of d = 10, d = 20, and d = 130. Since the Hadamard method encodes a tree
with a minimum dimension d determined by Equation 8, we set the embedding
dimensions to d = 40 for the Pizza ontology and d = 70 for the ImageNet
ontology, corresponding to their maximum degrees of 23 and 39, respectively.

Each embedding algorithm is configured using its recommended hyperparam-
eter settings from the corresponding papers. For Poincaré embeddings, we adopt
the settings used in the WordNet nouns experiment. Specifically, we use a con-
stant learning rate of 1, with an initial burn-in phase of 20 epochs at a reduced
learning rate of 0.1. Training continues for a total of 10, 000 epochs, with a batch
size of 50. For each positive example, we randomly sample 50 negative examples.

For the entailment cones method, following Ganea et al. [14], we first pretrain
using Poincaré embeddings for 100 epochs using a learning rate of 5.0 and a
burn-in learning rate of 0.5 for the initial 20 epochs. Subsequently, we train with

4 https://observablehq.com/@mbostock/imagenet-hierarchy
5 https://protege.stanford.edu/ontologies/pizza/pizza.owl

https://observablehq.com/@mbostock/imagenet-hierarchy
https://protege.stanford.edu/ontologies/pizza/pizza.owl
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entailment cones loss for 300 epochs using a learning rate of 1.0. Both pretraining
and training use a batch size equal to the number of nodes, meaning each epoch
consists of a single step. We observed that increasing the number of steps led
to overfitting, which adversely affected some metrics. For the construction-based
approaches, following Sala et al. [55], the scaling factor τ is set to

τ =
1

1.3 ∗ ℓ
log

(2− ϵ
2

ϵ
2

)
, (9)

where ϵ is the machine precision of the applied floating point format and ℓ is
the maximum path length of the tree, to avoid numerical problems while still
obtaining near optimal results.

4.3 Embedding evaluation metrics

Following the conventions in hyperbolic embedding literature [46,55,56], we focus
on three metrics to evaluate the quality of tree embeddings. The first metric is
average relative distortion, which measures the average relative embedding error
between all pairs of nodes in V , given as follows for N = |V | nodes:

Davg(ϕ) =
1

N(N − 1)

∑
u ̸=v

|dD(ϕ(u), ϕ(v))− dT (u, v)|
dT (u, v)

. (10)

This metric measures how much the hyperbolic distance on the embeddings dif-
fers from the tree distance between all node pairs. The second metric is worst-case
distortion, which specifically measures the ratio between the largest stretching
and shrinking factor of pairwise distances:

Dwc(ϕ) = max
u̸=v

dD(ϕ(u), ϕ(v))

dT (u, v)

(
min
u ̸=v

dD(ϕ(u), ϕ(v))

dT (u, v)

)−1

. (11)

Where the average distortion measures the global distortion, the worst-case dis-
tortion captures large local distortions. The third metric is the mean average
precision (MAP), given here as:

MAP(ϕ) =
1

N

∑
u∈V

1

deg(u)

∑
v∈NV (u)

∣∣∣NV (u) ∩ ϕ−1
(
BD(u, v)

)∣∣∣∣∣∣ϕ−1
(
BD(u, v)

)∣∣∣ , (12)

with deg(u) the degree of node u, NV (u) the neighboring nodes of u, and
BD(u, v) ⊂ Dn a closed ball centered at the embedding ϕ(u) of u with hyperbolic
radius dD(ϕ(u), ϕ(v)). Intuitively, the MAP is a reconstruction measure, which
identifies how well we can find back neighboring nodes in the area surrounding
each embedded node.

5 Experiments

For our experiments, we focus on four research questions to explore key aspects of
embedding hierarchies: (i) width versus depth, (ii) balanced versus imbalanced
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structures, (iii) few versus many nodes, and (iv) few versus many embedding
dimensions. We address each question sequentially. Finally, we apply the insights
gained to a case study, where we revisit the ImageNet and Pizza hierarchies and
propose an alternative organization that improves hyperbolic embeddings.

5.1 Is it better to design deep or wide hierarchies?

In the first experiment, we address a fundamental question: given the same num-
ber of nodes, should hierarchies be designed to be deep or wide? r-ary trees, as
visualized in Figure 2, provide an ideal structure for this investigation. Depth ver-
sus width inherently carries semantic implications for hierarchical organization.
Our objective is to quantify its impact on the resulting hyperbolic embeddings.

N=
25

6
N=

51
2

N=
10

24

r=2 r=3 r=4 r=5

Fig. 2. Visualizing depth versus width in r-ary trees. We show hierarchies for 256,
512, and 1024 nodes for four branching factors, ranging from 2 to 5. The higher the
branching factor, the wider the tree and the fewer hierarchical layers that are required
to reach the same number of nodes in the hierarchy.

Figure 3 presents the average distortion, worst-case distortion, and MAP as func-
tions of r for all r-ary trees. As the branching factor r increases, the hierarchy
becomes wider, requiring fewer layers to reach the same number of nodes. For
Poincaré embeddings, wider hierarchies result in higher distortions because the
algorithm relies solely on contrastive learning, ignoring the partial order between
hierarchical layers. Thus, it performs the worst among the approaches. Poincaré
embeddings with r = 2 achieve lower distortion and higher MAP than the entail-
ment method at high branching factors, effectively capturing deeper hierarchies.
In contrast to Poincaré, all other hyperbolic embedding methods exhibit the

opposite trend: wider hierarchies improve embedding quality, particularly reduc-
ing average distortion. Construction-based methods outperform Poincaré with
r = 2 in both metrics, highlighting a key trade-off. These methods achieve the
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Fig. 3. Investigating depth versus width across four hyperbolic embedding algo-
rithms, using r-ary trees with r ranging from 2 to 5, with hierarchies of 512 nodes and
20 embedding dimensions. For all methods except Poincaré embeddings, we find that
wide and shallow hierarchies lead to lower distortion than thin and deep hierarchies.

best overall scores. Thus, we recommend using construction-based algorithms
paired with wide hierarchies to achieve optimal hyperbolic embeddings.

5.2 What is the impact of hierarchy imbalance?

In the second experiment, we examine the impact of hierarchy imbalance on em-
bedding performance. Real-world hierarchies naturally tend to follow long-tailed
distributions and power laws [13]. However, current embedding algorithms are
agnostic to imbalance, and its effect on distortion remains largely unexplored.
To address this, we compare two imbalanced hierarchies—based on binomial dis-
tributions and the Barabási–Albert model with four balanced r-ary trees. The
results for all algorithms and evaluation metrics are presented in Table 1.

Table 1. Balanced versus imbalanced hyperbolic embeddings. We show
the results across 4 embedding methods, 6 hierarchies, and 3 evaluation metrics
with 512 nodes and 20 embedding dimensions. BA denotes the hierarchy from the
Barabási–Albert construction, which can’t be performed for the Hadamard construc-
tion due to having a maximum degree of 86 (Equation 8), hence the dash. For each
algorithm, we highlight the best and worst score over the hierarchies. Overall, we
find that balance is not critical for hyperbolic embedding. It is better to have a wide
imbalanced hierarchy than a deep balanced hierarchy.

Gradient-based Construction-based

Poincaré Entailment Precomputed Hadamard

Davg Dwc MAP Davg Dwc MAP Davg Dwc MAP Davg Dwc MAP

Balanced
2-ary 0.459 164.777 0.866 0.914 434.177 0.439 0.259 1.539 1 0.207 1.297 1
3-ary 1.085 183.974 0.770 0.878 316.338 0.217 0.156 1.252 1 0.127 1.155 1
4-ary 1.471 390.397 0.671 0.855 323.967 0.183 0.133 1.201 1 0.103 1.121 1
5-ary 1.770 336.711 0.534 0.837 383.626 0.169 0.120 1.201 1 0.080 1.092 1

Imbalanced
Binomial 1.439 69.530 0.171 0.863 224.731 0.304 0.249 1.542 1 0.186 1.257 1
BA 2.791 3607.95 0.020 0.802 731.914 0.231 0.140 1.329 1 - - -
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Interestingly, imbalanced hierarchies do not necessarily yield the highest distor-
tion. Focusing on the two construction-based methods, which outperform the
others overall, we observe that the binomial and Barabási-Albert trees perform
competitively with the r-ary trees. Their distortion is consistently better than
the 2-ary trees but worse than the 5-ary trees. In summary, a wide imbalanced
hierarchy is preferable to a deep balanced hierarchy, indicating that enforcing
hierarchical balance is not a strict requirement. However, the best results are
achieved when hierarchies are both wide and balanced, as imbalance increases
depth.

5.3 What is the impact of more nodes on embedding quality?

The larger the hierarchy, the deeper the knowledge it represents, but this also
increases the complexity of the corresponding embedding. In the third experi-
ment, we examine how the average distortion of various hierarchies changes as
a function of the number of nodes. Table 2 presents results for hierarchies with
256, 512, and 1024 nodes. Table 5 reports the MAPs of the same experiments.

Table 2. The effect of the number of nodes on average distortion across
all hyperbolic embedding algorithms. BA represents the hierarchy generated by the
Barabási–Albert model. For Poincaré embeddings, increasing the number of nodes re-
duces distortion, as more node pairs are available for contrastive learning. In contrast,
for other methods, adding more nodes slightly increases distortion due to the added
complexity from greater depth.

Gradient-based Construction-based
Poincaré Entailment Precomputed Hadamard

256 512 1024 256 512 1024 256 512 1024 256 512 1024

Balanced
2-ary 0.880 0.459 0.229 0.816 0.914 0.960 0.220 0.259 0.300 0.176 0.207 0.240
3-ary 1.439 1.085 0.752 0.742 0.878 0.940 0.124 0.156 0.160 0.102 0.127 0.130
4-ary 2.129 1.471 1.092 0.695 0.855 0.928 0.102 0.133 0.137 0.079 0.103 0.105
5-ary 2.472 1.770 1.385 0.657 0.837 0.919 0.115 0.120 0.156 0.078 0.080 0.103

Imbalanced
Binomial 1.736 1.439 0.988 0.717 0.863 0.932 0.207 0.249 0.298 0.161 0.186 0.211
BA 3.444 2.791 2.206 0.595 0.802 0.903 0.108 0.140 0.178 - - -

Notably, for Poincaré embeddings, larger hierarchies reduce distortion. This is
due to the contrastive learning objective, which benefits from more node pairs,
improving optimization. For all other methods, results remain largely stable,
with a slight positive correlation between the number of nodes and distortion.
This outcome relates to the findings of the first experiment: larger hierarchies
tend to be deeper, and embedding algorithms that incorporate partial order
perform better on shallower hierarchies. We conclude that for most embedding
algorithms, enriching hierarchies with more nodes only slightly increases distor-
tion, highlighting that a strong increase in semantic complexity has minimal
impact on embedding quality.
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5.4 How many embedding dimensions are sufficient?

Hyperbolic geometry enables representation learning in compact spaces [45]. In
the fourth experiment, we analyze the effect of embedding dimensionality on av-
erage distortion across different algorithms and hierarchies. The results, shown
in Table 3, indicate that all approaches perform better with fewer embedding di-
mensions. Notably, hyperbolic entailment cones and the Hadamard construction
are largely agnostic to dimensionality, exhibiting consistent performance across
all dimensions. These findings align with existing literature on the efficiency of
hyperbolic geometry in lower-dimensional settings.

Table 3. The effect of embedding dimensionality d across all four embedding
algorithms for average distortion, with all hierarchies using 512 nodes. Hyperbolic
geometry allows for embedding in low-dimensional spaces. Across all algorithms, using
fewer dimensions does not hamper performance, and can even lead to better scores for
Poincaré embeddings and the precomputed construction-based approach.

Gradient-based Construction-based
Poincaré Entailment Precomputed Hadamard

10 20 130 10 20 130 10 20 130 10 20 130

Balanced
2-ary 0.365 0.459 0.461 0.915 0.914 0.914 0.151 0.259 0.842 0.207 0.207 0.207
3-ary 1.130 1.085 1.105 0.880 0.878 0.878 0.095 0.156 0.467 0.127 0.127 0.127
4-ary 1.487 1.471 1.458 0.857 0.855 0.854 0.087 0.133 0.374 0.103 0.103 0.103
5-ary 1.838 1.770 1.834 0.840 0.837 0.836 0.088 0.120 0.325 0.080 0.080 0.080

Imbalanced
Binomial 1.435 1.439 1.435 0.865 0.863 0.861 0.118 0.249 0.682 - 0.186 0.186
BA 2.801 2.791 2.784 0.805 0.802 0.802 0.109 0.140 0.371 - - 0.114

ImageNet ImageNet reorganizedPizza Pizza reorganized

Fig. 4. Original and reorganized real-world ontologies Red edges indicate non-
tree edges. Reorganization removes multiple inheritance and reduces tree height.



14 M. Ayoughi et al.

5.5 Case study: The Pizza and ImageNet ontologies

Lastly, we analyze the practical impact of our recommendation—favoring width
over height—on real-world ontologies and evaluate the effects of multiple in-
heritance. The Pizza and ImageNet ontologies provide suitable case studies, as
shown in Figure 4. The figure illustrates the original ontologies alongside their
single inheritance and reorganized versions, which have been adjusted to reduce
height while maintaining the same number of nodes.
Table 4 summarizes the results for the original, single inheritance, and reorga-
nized versions of the ontologies.

Table 4. The effect of hierarchy re-organization on their hyperbolic embed-
ding. To showcase our own recommendations, we take the existing ImageNet and Pizza
hierarchies. Both have edges that create multiple inheritance, rendering them unusable
for three out of four methods. Removing multiple inheritance allows for the use of more
effective hyperbolic embedders. By including our other lessons as well, we arrive at a
re-organization that leads to vastly better distortion and MAP scores.

Gradient-based Construction-based

Poincaré Entailment Precomputed Hadamard

Davg Dwc MAP Davg Dwc MAP Davg Dwc MAP Davg Dwc MAP

Pizza
Original 3.321 7066.671 0.059 - - - - - - - - -
+ single inheritance 3.387 10509.346 0.051 0.499 511.594 0.195 0.234 1.538 1 0.126 1.180 1
+ reorganized 3.422 9343.566 0.045 0.452 1454.972 0.164 0.167 1.329 1 0.089 1.118 1

ImageNet
Original 0.809 3983.563 0.087 - - - - - - - - -
+ single inheritance 0.722 2745.952 0.220 0.961 2364.827 0.293 0.725 885.622 0.725 0.297 1.647 1
+ reorganized 1.008 12715.625 0.156 0.955 4096.000 0.164 0.507 2.698 1 0.171 1.232 1

Notably, Poincaré embeddings are the only method applicable to the original
multiple inheritance graphs, as other, more effective methods are incompatible
with such structures. The results clearly demonstrate that reorganizing the on-
tologies significantly improves the average distortion across all methods except
for Poincaré. Interestingly, for Poincaré embeddings, deeper hierarchies perform
better, whereas for all other methods, wider hierarchies yield superior results.

However, there is a trade-off between expressivity and the structural adjust-
ments made to reduce hierarchy depth. Enforcing a wider and less deep hierarchy
can result in the loss of certain semantics, which may diminish the ontology’s ex-
pressivity. For example, in the Pizza ontology, Cheese Vegetable Topping is both
a child of Cheese Topping and Vegetable Topping, but one of these relation-
ships is removed during the single inheritance process. Similarly, in the reorga-
nized hierarchy, Cheese Burger which is originally connected through Hamburger
to Sandwich, are flattened to become direct children of Sandwich. These ad-
justments improve downstream performance, particularly for construction-based
methods. If preserving semantic expressivity is more critical, deeper hierarchies
and Poincaré embeddings may be preferable. These findings highlight a nuanced
trade-off: wider hierarchies generally optimize hyperbolic embeddings for perfor-
mance, they may not be ideal for tasks requiring more semantics.
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6 Recommendations
We offer the following recommendations for ontology engineers when designing
ontologies or knowledge graph schemas for use with hyperbolic embeddings:

➠ Design hierarchies for width: The most effective embedding algorithms
leverage the hierarchical order between nodes to generate embeddings. Con-
sequently, these algorithms perform best with wide hierarchies that have high
branching factors, rather than deep narrow trees with slower branching.

➠ Do not worry about balance: Current algorithms are largely agnostic
to the balance between subtrees. Interestingly, our findings indicate that
when balance is not prioritized or feasible, embedding performance is not
significantly impacted. It is better to have a wide imbalanced hierarchy than
a deep balanced hierarchy. Achieving both high width and balance leads to
the best performance.

➠ Hyperbolic embeddings can handle additional node complexity:
We find that a significant increase in the number of nodes only moderately
impacts distortion. While more complex data structures lead to more chal-
lenging embedding optimization, strong enforcement of node sparsity is not
required to maintain effective embeddings.

➠ Avoid multiple inheritance: While Poincaré embeddings can handle hier-
archies with multiple inheritance, high-performance embedding algorithms
do not support them. Therefore, to minimize distortion, it is best to have
single inheritance. This approach is also recommended in many current on-
tology evaluation methodologies.

These recommendations should be seen as augmenting the main aim of ontology
design which is to reflect the domain for the identified task. Hence, these rec-
ommendations serve to help ontology engineers balance the need to reflect the
domain and the resulting ontologies effectiveness for use in downstream tasks.

7 Conclusion
In this work, we shed light on the relationship between hierarchy design and hy-
perbolic embeddings. Current hyperbolic literature assumes that hierarchies are
fixed prior knowledge and focuses on minimizing embedding distortion. Here,
we take the opposite approach by empirically investigating how different de-
sign choices can help improve hyperbolic embeddings. In the future, we plan to
move beyond structural features of hierarchies to incorporate semantic aspects,
including the ontology languages used and the information embedded in labels
or literals. This could be done by introducing additional loss functions to bal-
ance distortion with semantic constraints. If ontology details (e.g. labels) are
available, we could employ them via, e.g., embeddings. We hope that this study
encourages future work in how knowledge graphs and data can be designed from
the outset to improve down-stream machine learning performance.
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9 Appendix

9.1 What is the impact of more nodes on embedding reconstruction?

In Section 5.3, we investigate the effect of the number of nodes on average dis-
tortion. Table 5 presents the MAP values for all hyperbolic embedding algo-
rithms applied to trees with 256, 512, and 1024 nodes. The results show that
construction-based methods achieve the highest MAP values, with the exception
of the Barabási–Albert construction, which cannot be applied to the Hadamard
method due to the maximum tree degree constraint (Equation 8). For gradient-
based methods, increasing the number of nodes generally leads to a slight re-
duction in MAP values. We conclude that for gradient-based algorithms, en-
riching hierarchies with additional nodes only marginally increases distortion,
while construction-based methods remain unaffected. This highlights that even
a significant increase in semantic complexity has minimal impact on embedding
quality.

Table 5. The effect of the number of nodes on MAPs across all hyperbolic
embedding algorithms. BA represents the hierarchy generated by the Barabási–Albert
model. For gradient-based methods, increasing the number of nodes in most cases
reduces MAP, whereas for construction-based methods, all experiments result in the
maximum MAP of 1.

Gradient-based Construction-based
Poincaré Entailment Precomputed Hadamard

256 512 1024 256 512 1024 256 512 1024 256 512 1024

Balanced
2-ary 0.949 0.866 0.791 0.404 0.439 0.397 1 1 1 1 1 1
3-ary 0.862 0.770 0.620 0.254 0.217 0.206 1 1 1 1 1 1
4-ary 0.798 0.671 0.566 0.219 0.183 0.158 1 1 1 1 1 1
5-ary 0.650 0.534 0.509 0.205 0.169 0.136 1 1 1 1 1 1

Imbalanced
Binomial 0.169 0.171 0.154 0.342 0.304 0.251 1 1 1 1 1 1
BA 0.028 0.020 0.0136 0.249 0.231 0.192 1 1 1 - - -
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